scholarly journals Dynamics and control of space debris during its contactless ion beam assisted removal

2020 ◽  
Vol 1705 ◽  
pp. 012006
Author(s):  
V.S. Aslanov ◽  
A.S. Ledkov
Robotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ellery

Space-based manipulators have traditionally been tasked with robotic on-orbit servicing or assembly functions, but active debris removal has become a more urgent application. We present a much-needed tutorial review of many of the robotics aspects of active debris removal informed by activities in on-orbit servicing. We begin with a cursory review of on-orbit servicing manipulators followed by a short review on the space debris problem. Following brief consideration of the time delay problems in teleoperation, the meat of the paper explores the field of space robotics regarding the kinematics, dynamics and control of manipulators mounted onto spacecraft. The core of the issue concerns the spacecraft mounting which reacts in response to the motion of the manipulator. We favour the implementation of spacecraft attitude stabilisation to ease some of the computational issues that will become critical as increasing level of autonomy are implemented. We review issues concerned with physical manipulation and the problem of multiple arm operations. We conclude that space robotics is well-developed and sufficiently mature to tackling tasks such as active debris removal.


2017 ◽  
Vol 114 (24) ◽  
pp. E4859-E4867 ◽  
Author(s):  
Yumei Wu ◽  
Christina Whiteus ◽  
C. Shan Xu ◽  
Kenneth J. Hayworth ◽  
Richard J. Weinberg ◽  
...  

Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER–plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER–PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.


Author(s):  
A.P. Alpatov ◽  
◽  
S.V. S.V. Khoroshylov ◽  
A.I. Maslova ◽  
◽  
...  
Keyword(s):  
Ion Beam ◽  

2018 ◽  
Vol 4 (5) ◽  
pp. 7
Author(s):  
Shivam Dwivedi ◽  
Prof. Vikas Gupta

As the four-wheel steering (4WS) system has great potentials, many researchers' attention was attracted to this technique and active research was made. As a result, passenger cars equipped with 4WS systems were put on the market a few years ago. This report tries to identify the essential elements of the 4WS technology in terms of vehicle dynamics and control techniques. Based on the findings of this investigation, the report gives a mechanism of electronically controlling the steering system depending on the variable pressure applied on it. This enhances the controlling and smoothens the operation of steering mechanism.


Sign in / Sign up

Export Citation Format

Share Document