scholarly journals Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay

2020 ◽  
Vol 1707 ◽  
pp. 012025
Author(s):  
Yexuan Li ◽  
Hua Liu ◽  
Yumei Wei ◽  
Ming Ma
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Hua Liu ◽  
Yong Ye ◽  
Yumei Wei ◽  
Weiyuan Ma ◽  
Ming Ma ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hua Liu ◽  
Yong Ye ◽  
Yumei Wei ◽  
Weiyuan Ma ◽  
Ming Ma ◽  
...  

In this paper, we establish a reaction-diffusion predator-prey model with weak Allee effect and delay and analyze the conditions of Turing instability. The effects of Allee effect and delay on pattern formation are discussed by numerical simulation. The results show that pattern formations change with the addition of weak Allee effect and delay. More specifically, as Allee effect constant and delay increases, coexistence of spotted and stripe patterns, stripe patterns, and mixture patterns emerge successively. From an ecological point of view, we find that Allee effect and delay play an important role in spatial invasion of populations.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Xuan Tian ◽  
Shangjiang Guo

A diffusive predator–prey model with Allee effect and constant stocking rate for predator is investigated and it is shown that Allee effect is the decisive factor driving the formation of Turing pattern. Furthermore, it is observed that Turing pattern appears only when the diffusion rate of the prey is faster than that of the predator, which is just opposite to the condition of Turing pattern in the classical predator–prey system. Some sufficient conditions are obtained to ensure the asymptotical stability of a spatially homogeneous steady-state solution. The existence and nonexistence of positive nonconstant steady-state solutions are investigated to understand the mechanisms of generating spatiotemporal patterns. Furthermore, Hopf and steady-state bifurcations are analyzed in detail by using Lyapunov–Schmidt reduction.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Weiming Wang ◽  
Yongli Cai ◽  
Yanuo Zhu ◽  
Zhengguang Guo

We investigate the spatiotemporal dynamics induced by Allee effect in a reaction-diffusion predator-prey model. In the case without Allee effect, there is nonexistence of diffusion-driven instability for the model. And in the case with Allee effect, the positive equilibrium may be unstable under certain conditions. This instability is induced by Allee effect and diffusion together. Furthermore, via numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes, stripes-holes mixture, stripes, stripes-spots mixture, and spots replication, which shows that the dynamics of the model with Allee effect is not simple, but rich and complex.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. Vinoth ◽  
R. Sivasamy ◽  
K. Sathiyanathan ◽  
Bundit Unyong ◽  
Grienggrai Rajchakit ◽  
...  

AbstractIn this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.


2013 ◽  
Vol 14 (1) ◽  
pp. 768-779 ◽  
Author(s):  
Pablo Aguirre ◽  
Eduardo González-Olivares ◽  
Soledad Torres

Sign in / Sign up

Export Citation Format

Share Document