scholarly journals Asteroseismic probing of internal rotation in hot B subdwarf stars: Testing spin-orbit synchronism in two close binary systems

2009 ◽  
Vol 172 ◽  
pp. 012072 ◽  
Author(s):  
V Van Grootel ◽  
S Charpinet ◽  
G Fontaine ◽  
P Brassard ◽  
D Reese
Author(s):  
A F Lanza

Abstract We introduce a new model to explain the modulation of the orbital period observed in close stellar binary systems based on an angular momentum exchange between the spin of the active component and the orbital motion. This spin-orbit coupling is not due to tides, but is produced by a non-axisymmetric component of the gravitational quadrupole moment of the active star due to a persistent non-axisymmetric internal magnetic field. The proposed mechanism easily satisfies all the energy constraints having an energy budget ∼102 − 103 times smaller than those of previously proposed models and is supported by the observations of persistent active longitudes in the active components of close binary systems. We present preliminary applications to three well-studied binary systems to illustrate the model. The case of stars with hot Jupiters is also discussed showing that no significant orbital period modulation is generally expected on the basis of the proposed model.


2011 ◽  
Vol 7 (S282) ◽  
pp. 397-398 ◽  
Author(s):  
Simon Albrecht ◽  
J. N. Winn ◽  
D. C. Fabrycky ◽  
G. Torres ◽  
J. Setiawan

AbstractBinaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems.These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.


1965 ◽  
Vol 5 ◽  
pp. 120-130
Author(s):  
T. S. Galkina

It is necessary to have quantitative estimates of the intensity of lines (both absorption and emission) to obtain the physical parameters of the atmosphere of components.Some years ago at the Crimean observatory we began the spectroscopic investigation of close binary systems of the early spectral type with components WR, Of, O, B to try and obtain more quantitative information from the study of the spectra of the components.


1998 ◽  
Vol 11 (1) ◽  
pp. 398-398
Author(s):  
Kenji Tanabe

Propagation of the surface waves of the lobe-filing components of close binary systems is investigated theoretically. Such waves are considered to be analogous to the gravity waves of water on the earth. As a result, the equations of the surface wave in the rotating frame of reference are reduced to the so-called Kortewegde Vries (KdV) equation and non-linear Schroedinger (NLS) equation according to its ”depth”. Each of these equations is known to have the solution of soliton. When this soliton is sent to the other component of the binary system through the Lagrangian point, it can give rise to the flare activity observed in some kinds of close binary systems.


1974 ◽  
Vol 3 ◽  
pp. 89-107
Author(s):  
M. J. Rees

The discovery by Giacconi and his colleagues of variable X-ray sources in close binary systems certainly ranks as one of the highlights of astronomical research during the last 3 years. These remarkable objects have already been extensively studied, by optical and radio observations as well as in the X-ray band; and they seem likely to prove as significant and far-reaching in their implications as pulsars.The ‘Third Uhuru Catalogue’ (Giacconi et al., 1973a) contains about 160 sources, of which about 100 lie in our Galaxy. Their distribution over the sky (together with other arguments) suggests that these sources have luminosities of the general order 1036–1038 erg s−1, and that their typical distances are ˜ 10kpc. These galactic sources generally display rapid variability. Little else is known about most of them, but they are probably of the same general class as systems such as Her X1, Cen X3, Cyg X1 and Cyg X3. These sources have been investigated in detail, and in all cases one infers a system where the X-ray source is orbiting around a relatively ordinary star. Six sources have been optically identified, and there are some others whose binary nature is established by the occurrence of an X-ray eclipse. Orbital periods range from 4.8 h (Cyg X3) up to ˜ 10 days.


1987 ◽  
Vol 134 (1) ◽  
pp. 161-176 ◽  
Author(s):  
Masaomi Nakamura ◽  
Yasuhisa Nakamura

Sign in / Sign up

Export Citation Format

Share Document