scholarly journals The influence of the Ag nanostructures dimensions on the pattern of electric field distribution in cases of blood cancer

2021 ◽  
Vol 1816 (1) ◽  
pp. 012046
Author(s):  
U Farahdina ◽  
V Z Zulfa ◽  
M Firdhaus ◽  
E Endarko ◽  
A Rubiyanto ◽  
...  
2021 ◽  
Vol 22 (2) ◽  
pp. 127
Author(s):  
Miftakhul Firdhaus ◽  
Ulya Farahdina ◽  
Vinda Zakiyatuz Zulfa ◽  
Endarko Endarko ◽  
Agus Rubiyanto ◽  
...  

Blood cancer causes a significant increase in the concentration of Leukocytes, which can be broken down through dielectrophoresis and electrochemical procedures. Therefore, the electric field plays an important role in the migration of leukocytes to high voltage areas. This is because different electrode arrangements produce varying electric field distributions. Furthermore, this study applied finite element methods to generate electric fields when electrodes with an AC voltage were applied to blood placed in a chamber. Therefore, in this study, variations of mediums and electrode arrangements were investigated, which led to the recommendation of 3 models. The objective was to investigate electrode arrangements that produce optimal electric field distribution for the three models to exhibit a booster of electric field distribution. The maximum electric field is generated close to the electrode (Z=2 mm and Z=92 mm) for any material (i.e. normal blood, B lymphocyte, and T lymphocyte) with values of 22.6 V/m and 23.47 V/m, 22.85 V/m and 22.97 V/m, and 24.88 V/m and 25.01 V/m. Based on principle, lymphocytes in the blood result in positive dielectrophoresis, since they migrate to a higher electric field close to the electrode, with enough input voltage to turn the electrochemical process on the leukocytes into electric current. Furthermore, this study provides new perspectives and ideas, which have not been revealed in previous studies on blood cancer therapy using the electric field of Ag electrode in blood cancer distribution.Keywords: blood cancer, dielectrophoresis, electric field, voltage, electrochemical, and cancer therapy.


2017 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
I. Made Yulistya Negara ◽  
Dimas Anton Asfani ◽  
Daniar Fahmi ◽  
Yusrizal Afif

2020 ◽  
Vol 12 ◽  
Author(s):  
Jyoti Katyal ◽  
Shivani Gautam

Background: A relatively narrow LSPR peak and a strong inter band transition ranging around 800 nm makes Al strongly plasmonic active material. Usually, Al nanoparticles are preferred for UV-plasmonic as the SPR of small size Al nanoparticles locates in deep UV-UV region of the optical spectrum. This paper focused on tuning the LSPR of Al nanostructure towards infrared region by coating Au layer. The proposed structure has Au as outer layer which prevent the further oxidation of Al nanostructure. Methods: The Finite Difference Time Domain (FDTD) and Plasmon Hybridization Theory has been used to evaluated the LSPR and field enhancement of single and dimer Al-Al2O3-Au MDM nanostructure. Results: It is observed that the resonance mode show dependence on the thickness of Al2O3 layer and also on the composition of nanostructure. The Au layered MDM nanostructure shows two peak of equal intensities simultaneously in UV and visible region tuned to NIR region. The extinction spectra and electric field distribution profiles of dimer nanoparticles are compared with monomer to reveal the extent of coupling. The dimer configuration shows higher field enhancement ~107 at 1049 nm. By optimizing the thickness of dielectric layer the MDM nanostructure can be used over UV-visible-NIR region. Conclusion: The LSPR peak shows dependence on the thickness of dielectric layer and also on the composition of nanostructure. It has been observed that optimization of size and thickness of dielectric layer can provide two peaks of equal intensities in UV and Visible region which is advantageous for many applications. The electric field distribution profiles of dimer MDM nanostructure enhanced the field by ~107 in visible and NIR region shows its potential towards SERS substrate. The results of this study will provide valuable information for the optimization of LSPR of Al-Al2O3-Au MDM nanostructure to have high field enhancement.


Sign in / Sign up

Export Citation Format

Share Document