scholarly journals An Integrated Silicon Photonic Chip for Continuous-Variable Quantum Random Numbers Generator Based on Vacuum Fluctuation

2021 ◽  
Vol 1865 (2) ◽  
pp. 022018
Author(s):  
Menglin Zhu ◽  
Xiangyu Wang ◽  
Bingjie Xu ◽  
Song Yu ◽  
Ziyang Chen ◽  
...  
2019 ◽  
Vol 13 (12) ◽  
pp. 839-842 ◽  
Author(s):  
G. Zhang ◽  
J. Y. Haw ◽  
H. Cai ◽  
F. Xu ◽  
S. M. Assad ◽  
...  

2009 ◽  
Vol E92-C (2) ◽  
pp. 217-223 ◽  
Author(s):  
Tao CHU ◽  
Hirohito YAMADA ◽  
Shigeru NAKAMURA ◽  
Masashige ISHIZAKA ◽  
Masatoshi TOKUSHIMA ◽  
...  

2011 ◽  
Vol 43 (8) ◽  
pp. 76-80
Author(s):  
Rostislav M. Mikhersky ◽  
Oleg I. Popov
Keyword(s):  

PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

2018 ◽  
Author(s):  
Josephine Ann Urquhart ◽  
Akira O'Connor

Receiver operating characteristics (ROCs) are plots which provide a visual summary of a classifier’s decision response accuracy at varying discrimination thresholds. Typical practice, particularly within psychological studies, involves plotting an ROC from a limited number of discrete thresholds before fitting signal detection parameters to the plot. We propose that additional insight into decision-making could be gained through increasing ROC resolution, using trial-by-trial measurements derived from a continuous variable, in place of discrete discrimination thresholds. Such continuous ROCs are not yet routinely used in behavioural research, which we attribute to issues of practicality (i.e. the difficulty of applying standard ROC model-fitting methodologies to continuous data). Consequently, the purpose of the current article is to provide a documented method of fitting signal detection parameters to continuous ROCs. This method reliably produces model fits equivalent to the unequal variance least squares method of model-fitting (Yonelinas et al., 1998), irrespective of the number of data points used in ROC construction. We present the suggested method in three main stages: I) building continuous ROCs, II) model-fitting to continuous ROCs and III) extracting model parameters from continuous ROCs. Throughout the article, procedures are demonstrated in Microsoft Excel, using an example continuous variable: reaction time, taken from a single-item recognition memory. Supplementary MATLAB code used for automating our procedures is also presented in Appendix B, with a validation of the procedure using simulated data shown in Appendix C.


2020 ◽  
Vol 9 (1) ◽  
pp. 84-88
Author(s):  
Govinda Prasad Dhungana ◽  
Laxmi Prasad Sapkota

 Hemoglobin level is a continuous variable. So, it follows some theoretical probability distribution Normal, Log-normal, Gamma and Weibull distribution having two parameters. There is low variation in observed and expected frequency of Normal distribution in bar diagram. Similarly, calculated value of chi-square test (goodness of fit) is observed which is lower in Normal distribution. Furthermore, plot of PDFof Normal distribution covers larger area of histogram than all of other distribution. Hence Normal distribution is the best fit to predict the hemoglobin level in future.


2019 ◽  
Author(s):  
Yunlong Zhang ◽  
Djorn Karnick ◽  
Marc Schneider ◽  
Lars Eisenblätter ◽  
Thomas Kühner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document