scholarly journals Static and frequency analysis of the inner frame of the rotary platform of the fuel tank test bench

2021 ◽  
Vol 1889 (4) ◽  
pp. 042008
Author(s):  
E V Niselovskaya ◽  
M V Shkurin
Author(s):  
Fabrizio Ponti

The diagnosis of a misfire event and the isolation of the cylinder in which the misfire took place is enforced by the On Board Diagnostics (OBD) requirements over the whole operating range for all the vehicles whatever the configuration of the engine they mount. This task is particularly challenging for engines with a high number of cylinders and for engine operating conditions that are characterized by high engine speed and low load. This is why much research has been devoted to this topic in recent years, developing different detection methodologies based on signals such as instantaneous engine speed, exhaust pressure, etc., both in time and frequency domains. This paper presents the development and the validation of a methodology for misfire detection based on the time-frequency analysis of the instantaneous engine speed signal. This signal contains information related to the misfire event, since a misfire occurrence is characterized by a sudden engine speed decrease and a subsequent damped torsional vibration. The identification of a specific pattern in the instantaneous engine speed frequency content, characteristic of the system under study, allows performing the desired misfire detection and cylinder isolation. Particular attention has been devoted in designing the methodology in order to avoid the possibility of false alarms caused by the excitation of this frequency pattern independently from a misfire occurrence. Although the time-frequency analysis is usually considered a time consuming operation and is not associated to on-board application, the methodology here proposed has been properly modified and simplified in order to obtain the quickness required for its use directly on-board a vehicle. Experimental tests have been performed on a 5.7 liter V12 spark ignited engine, with the engine mounted on-board a vehicle. The frequency pattern identified is not the same that could be observed when running the engine on a test bench, because of the different stiffness that the connection between the engine and the load presents in the two cases. This makes impossible to set-up the methodology here proposed only on a test bench, without running tests on the vehicle.


Author(s):  
Fabrizio Ponti

The diagnosis of a misfire event and the isolation of the cylinder in which the misfire took place is enforced by the onboard diagnostics (OBD) requirements over the whole operating range for all the vehicles, whatever the configuration of the engine they mount. This task is particularly challenging for engines with a high number of cylinders and for engine operating conditions that are characterized by high engine speed and low load. This is why much research has been devoted to this topic in recent years, developing different detection methodologies based on signals such as instantaneous engine speed, exhaust pressure, etc., both in time and frequency domains. This paper presents the development and the validation of a methodology for misfire detection based on the time-frequency analysis of the instantaneous engine speed signal. This signal contains information related to the misfire event, since a misfire occurrence is characterized by a sudden engine speed decrease and a subsequent damped torsional vibration. The identification of a specific pattern in the instantaneous engine speed frequency content, characteristic of the system under study, allows performing the desired misfire detection and cylinder isolation. Particular attention has been devoted to designing the methodology in order to avoid the possibility of false alarms caused by the excitation of this frequency pattern independently from a misfire occurrence. Although the time-frequency analysis is usually considered a time-consuming operation and not associated to onboard application, the methodology proposed here has been properly modified and simplified in order to obtain the quickness required for its use directly onboard a vehicle. Experimental tests have been performed on a 5.7l V12 spark-ignited engine run onboard a vehicle. The frequency characteristic of the engine-vehicle system is not the same that could be observed when running the engine on a test bench, because of the different inertia and stiffness that the connection between the engine and the load presents in the two cases. This makes it impossible to test and validate the methodology proposed here only on a test bench, without running tests on the vehicle. Nevertheless, the knowledge of the mechanical design of the engine and driveline gives the possibility of determining the resonance frequencies of the system (the lowest one is always the most important for this work) before running tests on the vehicle. This allows saving time and reducing costs in developing the proposed approach.


2021 ◽  
Vol 11 (6) ◽  
pp. 2575
Author(s):  
Julen Bacaicoa ◽  
Tomás Ballesteros ◽  
Ignacio Arana ◽  
Jokin Aginaga ◽  
Juan-Ignacio Latorre-Biel

A rollover test bench has been designed, manufactured, and validated for analyzing the all-terrain vehicle (ATV)-Quad overturn of diverse vehicles in different configurations, such as installing a rollover protection system (ROPS), considering drivers of different physical constitutions, the appropriate use of safety belts, or having a full or empty fuel tank. The main purpose of this research is to determine the tilt angle of the vehicle that triggers the ATV-Quad overturn. The scope of the design and development of the newly conceived bench include the mechanical structure, the electronics and the control. It can simulate static and dynamic rollover in different directions. As a main conclusion, it can be stated that the performance of the test bench was successful, since it allowed for the development of several ATV models, equipped with different dummies, in a variety of configurations. In particular, it was possible to assess the effectivity of the AD-ROPS system (automatically deployed ROPS), regarding the protection of the driver of the vehicle. Moreover, multiple tests, performed with diverse ATV-Quads in the developed bench and in different configurations, have been reported and their results discussed.


2002 ◽  
Vol 12 (3) ◽  
pp. 165-168
Author(s):  
S. Withington ◽  
P. Kittara ◽  
G. Yassin

Sign in / Sign up

Export Citation Format

Share Document