scholarly journals Research on Reinforcement Learning Algorithm for Path Planning of Multiple Mobile Robots

2021 ◽  
Vol 1915 (4) ◽  
pp. 042022
Author(s):  
Ya Xu
2021 ◽  
Vol 2138 (1) ◽  
pp. 012011
Author(s):  
Yanwei Zhao ◽  
Yinong Zhang ◽  
Shuying Wang

Abstract Path planning refers to that the mobile robot can obtain the surrounding environment information and its own state information through the sensor carried by itself, which can avoid obstacles and move towards the target point. Deep reinforcement learning consists of two parts: reinforcement learning and deep learning, mainly used to deal with perception and decision-making problems, has become an important research branch in the field of artificial intelligence. This paper first introduces the basic knowledge of deep learning and reinforcement learning. Then, the research status of deep reinforcement learning algorithm based on value function and strategy gradient in path planning is described, and the application research of deep reinforcement learning in computer game, video game and autonomous navigation is described. Finally, I made a brief summary and outlook on the algorithms and applications of deep reinforcement learning.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Song ◽  
Yibin Li ◽  
Xiaoli Wang ◽  
Xin Ma ◽  
Jiuhong Ruan

Reinforcement learning algorithm for multirobot will become very slow when the number of robots is increasing resulting in an exponential increase of state space. A sequentialQ-learning based on knowledge sharing is presented. The rule repository of robots behaviors is firstly initialized in the process of reinforcement learning. Mobile robots obtain present environmental state by sensors. Then the state will be matched to determine if the relevant behavior rule has been stored in the database. If the rule is present, an action will be chosen in accordance with the knowledge and the rules, and the matching weight will be refined. Otherwise the new rule will be appended to the database. The robots learn according to a given sequence and share the behavior database. We examine the algorithm by multirobot following-surrounding behavior, and find that the improved algorithm can effectively accelerate the convergence speed.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 132
Author(s):  
Jianfeng Zheng ◽  
Shuren Mao ◽  
Zhenyu Wu ◽  
Pengcheng Kong ◽  
Hao Qiang

To solve the problems of poor exploration ability and convergence speed of traditional deep reinforcement learning in the navigation task of the patrol robot under indoor specified routes, an improved deep reinforcement learning algorithm based on Pan/Tilt/Zoom(PTZ) image information was proposed in this paper. The obtained symmetric image information and target position information are taken as the input of the network, the speed of the robot is taken as the output of the next action, and the circular route with boundary is taken as the test. The improved reward and punishment function is designed to improve the convergence speed of the algorithm and optimize the path so that the robot can plan a safer path while avoiding obstacles first. Compared with Deep Q Network(DQN) algorithm, the convergence speed after improvement is shortened by about 40%, and the loss function is more stable.


2012 ◽  
Vol 588-589 ◽  
pp. 1515-1518
Author(s):  
Yong Song ◽  
Bing Liu ◽  
Yi Bin Li

Reinforcement learning algorithm for multi-robot may will become very slow when the number of robots is increasing resulting in an exponential increase of state space. A sequential Q-learning base on knowledge sharing is presented. The rule repository of robots behaviors is firstly initialized in the process of reinforcement learning. Mobile robots obtain present environmental state by sensors. Then the state will be matched to determine if the relevant behavior rule has been stored in database. If the rule is present, an action will be chosen in accordance with the knowledge and the rules, and the matching weight will be refined. Otherwise the new rule will be joined in the database. The robots learn according to a given sequence and share the behavior database. We examine the algorithm by multi-robot following-surrounding behavior, and find that the improved algorithm can effectively accelerate the convergence speed.


Sign in / Sign up

Export Citation Format

Share Document