scholarly journals Construction of University Intelligent Manufacturing Learning Factory Laboratory for Emerging Engineering

2021 ◽  
Vol 1944 (1) ◽  
pp. 012007
Author(s):  
Ping Xu ◽  
Jiangang Yi
2020 ◽  
pp. 49-52
Author(s):  
S.E. YANUTINA ◽  

The relevance of research in the factory laboratory of JSC «198 KZHI», which is part of the HC GVSU «Center», is dictated by the need to dispose of foam polystyrene waste that occurs in large quantities when producing the precast concrete. In the production of three-layer external wall panels, polystyrene heatinsulating plates of the PPS 17-R-A brand are used as an effective insulation material. The secondary use of PPS 17-R-A for its intended purpose, as a heater, is not possible. The volume of foam polystyrene produced varies from 25 to 45 m3 per month. Utilization (disposal) of foam polystyrene waste is an expensive undertaking. Its use as a filler in the production of expanded polystyrene blocks was tested in the factory’s laboratory to produce foam polystyrene concrete with specified physical and mechanical characteristics. The results of testing of expanded polystyrene concrete of classes B2.5 and B 7.5 are presented. It is shown that under the conditions of the reinforced concrete factory technology, the production of polystyrene concrete blocks is possible with the achievement of the design strength. The information presented in the article is aimed at motivating specialists who produce recast concrete to the possibility of using foam polystyrene waste for low-rise construction. Keywords: foam polystyrene, ecology, energy efficiency, foam polystyrene concrete, foam polystyrene heat insulation plates, precast concrete.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 170-178
Author(s):  
Lei Wang ◽  
Sijia Yang ◽  
Wenqi Fan ◽  
Fangqing Tang

Abstract Based on the characteristics of intelligent manufacturing and the theory of technology diffusion, this paper constructs a cellular automata model with government support policy, information exchange, technology maturity, diffusion intermediary, and market competition as the influencing factors and analyzes the influence mechanism of the first three main factors on the diffusion of intelligent manufacturing technology in industrial clusters using MATLAB. This paper also makes an empirical analysis of the diffusion of intelligent manufacturing technology in the bearing industry cluster in Xinchang County and finds that the results are basically consistent by comparing the simulation data with the fit degree of the real data. In this paper, the diffusion intermediary and government support policy have the greatest influence on the application of intelligent manufacturing in small- and medium-sized enterprises, and the model proposed in this paper is effective.


2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.


Sign in / Sign up

Export Citation Format

Share Document