scholarly journals Exploration of wall angle and tool rotation on surface roughness in Negative Incremental Forming Process

2021 ◽  
Vol 1950 (1) ◽  
pp. 012092
Author(s):  
Ajay Kumar ◽  
Amit Kumar ◽  
Amit Kumar ◽  
Shikha Gupta ◽  
Rakesh Rajpal ◽  
...  
2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771011 ◽  
Author(s):  
Zimeng Yao ◽  
Yan Li ◽  
Mingshun Yang ◽  
Qilong Yuan ◽  
Pengtao Shi

The deformation energy in single point incremental forming has an immediate impact on the processing cost, the heat and the wear effects between the tool and the formed material. Meanwhile, poor forming quality is still one of the largest challenges for the development and commercialization of this method. Therefore, the goal of this study is to search for the optimal working condition for lower energy consumption with better forming quality during the forming process. A Box–Behnken design for a cone parts forming process has been performed. The effects of four input parameters (step down, tool diameter, wall angle, and initial sheet thickness) on three outputs—deformation energy, surface roughness, and geometric error—have been investigated. With the target of minimal synchronization of deformation energy consumption, surface roughness, and geometric error, which are 1522.4 J, 0.97 µm, and 1.939 mm, respectively, in this case, four processing parameters were optimized with tool diameters as 16 mm, step down as 0.5 mm, sheet thickness as 0.57 mm, and wall angle as 65°. With optimization of deformation energy and surface roughness, in conjunction with geometric error compensation, an increased accuracy of the resulting parts can be obtained with minimum deformation energy and surface roughness.


Author(s):  
Ramkumar Kathalingam ◽  
Baskar Neelakandan ◽  
Elangovan Krishnan ◽  
Sathiya Narayanan Chinnayan ◽  
Selvarajan Arangulavan ◽  
...  

Incremental Sheet metal Forming (ISF) is a reliable process of converting a blank to work piece with better outputs compared to conventional forming process. The flexibility of ISF in producing the rapid prototype based on the customer needs is increased which is also desirable in the industry. But Single Point Incremental Forming (SPIF) process takes more time to form a product and hence the longer time is a barrier in implementing this process in industries. In this research work, the ISF process was made on sheet metal SS 202 using a newly designed multi-point tool and the obtained outputs were compared with the same material of sheet metal formed by traditionally available single point tool. This Multi Point Incremental Forming (MPIF) process takes lesser process time to give better formability, improved wall angle and good surface roughness. The input process parameters selected for the process are type of tool, speed, feed, Vertical Step Depth (VSD), and lubrication. They are arranged by using the taguchi Design of Experiments (DOE) approach. The responses considered are wall angle, formability, surface roughness, spring back and forming time. The multiple outputs obtained were optimized by Grey Relational Analysis (GRA) to predict the superior parameter. Confirmation test was also made to validate the output result. Fractography analysis was carried out to predict the fracture mechanism obtained during the forming process. The surface topography was also made on the surface of the formed area of the sheet metal. This research work concludes that newly designed MPIF outperforms SPIF.


Author(s):  
Saurabh Rai ◽  
Rakesh Kumar ◽  
Harish Kumar Nirala ◽  
Kevin Francis ◽  
Anupam Agrawal

Abstract Single point incremental forming (SPIF) is more accurate and economical than the conventional forming process for customized products. Majority of the work in SPIF has been carried out on metals. However, polymers are also required to shape. Polycarbonate has wide application in safety glass, bottles, automotive and aircraft industry due to its transparent as well as attractive processing and mechanical properties as compared to other polymeric plastics. In present work, the Polycarbonate (PC) sheet of thickness 1.8 mm is deformed to make a square cup at different angles. Tensile testing is done to analyze the effect of wall angle on the deformed cup. This work illustrates the effect of the SPIF process on material strength in a different directions (vertical and horizontal) of the final deformed product. Tool forces are evaluated using ABAQUS® simulation for SPIF. Numerical simulation approach is used to calculate the fracture energy, which utilizes the force-displacement curve of the specimen and is verified.


Author(s):  
D. Suresh Kumar ◽  
N. Ethiraj

Incremental forming is a non-conventional metal forming process which is widely used to produce the customized parts especially in medical and aerospace industries. One of the challenges encountered in the single stage process is the maximum wall angle of the component that can be formed to a maximum possible depth without fracture. Many strategies have been tried by the researchers in the past to overcome this limitation. The aim of this research work is to investigate the effect of 5 stage incremental forming process in improving the formation of maximum wall angle to a possible height which is not possible in single stage incremental forming. Also, the different strain measurements are carried out to identify the region at which the fracture is likely to occur in the produced part. It is observed from single stage incremental forming process for a wall angle of 64, max. depth of 45mm is achieved in the part produced. The current 5 stage incremental forming process reached the max. height of 54 mm with a wall angle of 76 successfully. The maximum thickness strain of 75% is observed at a distance of 18mm from the bottom end of the flange of a formed component.


2009 ◽  
Vol 209 (9) ◽  
pp. 4621-4626 ◽  
Author(s):  
M. Durante ◽  
A. Formisano ◽  
A. Langella ◽  
F. Memola Capece Minutolo

2013 ◽  
Vol 554-557 ◽  
pp. 1419-1431 ◽  
Author(s):  
Daniel Fritzen ◽  
Anderson Daleffe ◽  
Jovani Castelan ◽  
Lirio Schaeffer

This work addresses through bibliographies and experiments the behavior of sheet brass 70/30 for Incremental Sheet Forming process - ISF, based on the parameters: wall angle (), step vertical (ΔZ) strategy and the way the tool. Experiments based on the method called Single Point Incremental Forming - SPIF. For execution of practical tests, we used the resources: software CAD / CAM, CNC machining center with three axles, matrix incremental, incremental forming tool and a device press sheets. Furthermore, measurement was made of the true deformation () and thickness (s1). Practical tests have shown that the spiral machining strategy yielded a greater wall angle, compared to the conventional strategy outline.


2021 ◽  
Vol 1950 (1) ◽  
pp. 012090
Author(s):  
Ajay Kumar ◽  
Mohit Chauhan ◽  
Jasminder Kaur Sandhu ◽  
Amit Kumar

Author(s):  
A. Bhattacharya ◽  
Samarjit Singh ◽  
K. Maneesh ◽  
N. Venkata Reddy ◽  
Jian Cao

Incremental sheet metal forming (ISMF) has demonstrated its great potential to form complex three-dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides a competitive alternative for economically and effectively fabricating low-volume functional sheet parts. However, ISMF has limitations with respect to maximum formable wall angle, geometrical accuracy and surface finish of the component. In the present work, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish. Box-Behnken method is used to design the experiments for formability study and full factorial method is used for surface finish study. Analysis of experimental results indicates that formability in incremental forming decreases with increase in tool diameter. Formable angle first increases and then decreases with incremental depth and it is also observed that the variation in the formable angle is not significant in the range of incremental depths considered to produce good surface finishes during the present study. A simple analysis model is used to estimate the stress values during incremental sheet metal forming assuming that the deformation occurs predominantly under plane strain condition. A stress based criterion is used along with the above mentioned analysis to predict the formability in ISMF and its predictions are in very good agreement with the experimental results. Surface roughness decreases with increase in tool diameter for all incremental depths. Surface roughness increases first with increase in incremental depth up to certain angle and then decreases. Surface roughness value decreases with increase in wall angle.


2010 ◽  
Vol 129-131 ◽  
pp. 1222-1227 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Asif Iqbal

Single Point Incremental Forming (SPIF) is a novel sheet metal forming process. The formability (i.e. spif-ability) in this process is determined through Varying Wall Angle Conical Frustum (VWACF) test. In this paper, the effect of variation in the curvature radius, a geometrical parameter of test, on the test results is investigated. A series of VWACF tests with a variety of curvature radii is performed to quantify the said effect. It is found that the spif-ability increases with increasing of curvature radius. However, any variation in the curvature radius does not affect the spif-ability when the normalized curvature radius (i.e. curvature radius/tool radius) becomes higher than 9.


Sign in / Sign up

Export Citation Format

Share Document