On the Effect of Curvature Radius on the Spif-Ability

2010 ◽  
Vol 129-131 ◽  
pp. 1222-1227 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Asif Iqbal

Single Point Incremental Forming (SPIF) is a novel sheet metal forming process. The formability (i.e. spif-ability) in this process is determined through Varying Wall Angle Conical Frustum (VWACF) test. In this paper, the effect of variation in the curvature radius, a geometrical parameter of test, on the test results is investigated. A series of VWACF tests with a variety of curvature radii is performed to quantify the said effect. It is found that the spif-ability increases with increasing of curvature radius. However, any variation in the curvature radius does not affect the spif-ability when the normalized curvature radius (i.e. curvature radius/tool radius) becomes higher than 9.

2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Author(s):  
Chetan P. Nikhare

Abstract A substantial increase in demand on the sheet metal part usage in aerospace and automotive industries is due to the increase in the sale of these products to ease the transportation. However, due to the increase in fuel prices and further environmental regulation had left no choice but to manufacture more fuel efficient and inexpensive vehicles. These heavy demands force researchers to think outside the box. Many innovative research projects came to replace the conventional sheet metal forming of which single point incremental forming is one of them. SPIF is the emerging die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any processing time to undergo plastic deformation. It has several advantages over the conventional process like high process flexibility, elimination of die, complex shape and better formability. Previous literature provides enormous research on formability of metal during this process, process with various metals and hybrid metals, the influence of various process parameter, but residual formability after this process is untouched. Thus, the aim of this paper is to investigate the residual formability of the formed parts using single point incremental forming and then restrike with a conventional tool. The common process parameters of single point incremental forming were varied, and residual formability was studied through the conventional process. The strain and thickness distribution were measured and analyzed. In addition, the forming limit of the part was plotted and compared.


Single point incremental sheet metal forming has passed through a period of ample improvement with developing responsiveness from research societies and industries globally. The process has expressively spared the practice of using costly dies, which makes it an appropriate process for manufacturing prototypes and small batch production. It also discovers easiness in fabricating components of timeworn equipment. Additionally, in recent years, aluminum alloys become the most commonly used materials in the automotive, aeronautics, and transportation industries for their structural and other applications. The effect of various process parameters on the formability of Single Point Incremental Forming of aluminum alloys has been critically surveyed. Ultimately, this article also debated the dares associated with the Single Point Incremental Forming process and recommended some correlated research regions which probably charm significant research considerations in the future.


Author(s):  
Ramkumar Kathalingam ◽  
Baskar Neelakandan ◽  
Elangovan Krishnan ◽  
Sathiya Narayanan Chinnayan ◽  
Selvarajan Arangulavan ◽  
...  

Incremental Sheet metal Forming (ISF) is a reliable process of converting a blank to work piece with better outputs compared to conventional forming process. The flexibility of ISF in producing the rapid prototype based on the customer needs is increased which is also desirable in the industry. But Single Point Incremental Forming (SPIF) process takes more time to form a product and hence the longer time is a barrier in implementing this process in industries. In this research work, the ISF process was made on sheet metal SS 202 using a newly designed multi-point tool and the obtained outputs were compared with the same material of sheet metal formed by traditionally available single point tool. This Multi Point Incremental Forming (MPIF) process takes lesser process time to give better formability, improved wall angle and good surface roughness. The input process parameters selected for the process are type of tool, speed, feed, Vertical Step Depth (VSD), and lubrication. They are arranged by using the taguchi Design of Experiments (DOE) approach. The responses considered are wall angle, formability, surface roughness, spring back and forming time. The multiple outputs obtained were optimized by Grey Relational Analysis (GRA) to predict the superior parameter. Confirmation test was also made to validate the output result. Fractography analysis was carried out to predict the fracture mechanism obtained during the forming process. The surface topography was also made on the surface of the formed area of the sheet metal. This research work concludes that newly designed MPIF outperforms SPIF.


2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Meftah Hrairi ◽  
Salah B. M. Echrif

Single Point Incremental Forming (SPIF) is a promising sheet-metal-forming process that permits the manufacturing of small to medium-sized batches of complex parts at low cost. It allows metal forming to work in the critical ‘necking-to-tearing' zone which results in a strong thinning before failure if the process is well designed. Moreover, the process is complex due to the number of variables involved. Thus, it is not possible to consider that the process has been well assessed; several remaining aspects need to be clarified. The objective of the present paper is to study some of these aspects, namely, the phenomenon of the wall thickness overstretch along depth and the effect of the tool path on the distribution of the wall thickness using finite element simulations.Abstrak: Pembentukan Tokokan Mata Tunggal (Single Point Incremental Forming (SPIF)) merupakan satu proses pembentukan kepingan logam yang membolehkan pembuatan dalam jumlah yang kecil hingga sederhana, bahagian-bahagian yang kompleks pada kos yang rendah. Jika proses ini direka dengan baik, kaedah ini membolehkan pembentukan logam yang baik terhasil. Jika tidak, semasa peringkat zon kritikal ‘perleheran-ke-pengoyakan' menyebabkan penipisan keterlaluan yang boleh menyebabkan logam tersebut rosak. Tambahan pula, proses ini agak kompleks, kerana ia melibatkan beberapa pemboleh ubah. Maka, walaupun proses ini telah dinilaikan seeloknya; masih terdapat beberapa aspek lain yang perlu diperjelaskan. Objektif kertas ini dibentangkan adalah untuk mengkaji beberapa aspek tertentu, seperti, ketebalan dinding regangan berlebihan di sepanjang kedalaman dan kesan tool path (beberapa siri posisi koordinat untuk menentukan pergerakan alatan memotong ketika operasi memesin) terhadap pengagihan ketebalan dinding menggunakan simulasi unsur terhingga.


2007 ◽  
Vol 344 ◽  
pp. 931-938 ◽  
Author(s):  
Aleš Petek ◽  
Gašper Gantar ◽  
Tomaz Pepelnjak ◽  
Karl Kuzman

In contemporary industrial production the ecological aspects have increasingly important role in selection of sheet metal forming process. To produce sheet metal parts with minimal environmental burdening the shortening of forming processes including the procedures for production of appurtenant forming tools as well as decrease use of lubricant is prerequisite. The ecological aspects have to be considered also already in developmental phase where the forming technology is evaluated in digital environment with FEM simulations. In addition, particularly in small and medium batch production the geometrically complex parts are difficult to form economically with conventional forming processes like deep drawing or stretching. Therefore, new concepts like hydro-mechanical forming or incremental sheet metal forming were developed. In order to select the optimal forming process the production costs as well as the environmental aspects like lubrication, noise, pollution and energy per produced part have to be considered. The paper is focused towards the comparison of conventional deep drawing (DD) process aimed for forming the pyramid-shaped part with single point incremental forming technology (SPIF). The economical and ecological aspects affecting the successful forming by both concepts are determined. Comparative evaluation was established in order to present advantages and drawbacks of each analysed technology.


Author(s):  
Saurabh Rai ◽  
Rakesh Kumar ◽  
Harish Kumar Nirala ◽  
Kevin Francis ◽  
Anupam Agrawal

Abstract Single point incremental forming (SPIF) is more accurate and economical than the conventional forming process for customized products. Majority of the work in SPIF has been carried out on metals. However, polymers are also required to shape. Polycarbonate has wide application in safety glass, bottles, automotive and aircraft industry due to its transparent as well as attractive processing and mechanical properties as compared to other polymeric plastics. In present work, the Polycarbonate (PC) sheet of thickness 1.8 mm is deformed to make a square cup at different angles. Tensile testing is done to analyze the effect of wall angle on the deformed cup. This work illustrates the effect of the SPIF process on material strength in a different directions (vertical and horizontal) of the final deformed product. Tool forces are evaluated using ABAQUS® simulation for SPIF. Numerical simulation approach is used to calculate the fracture energy, which utilizes the force-displacement curve of the specimen and is verified.


Author(s):  
D. Suresh Kumar ◽  
N. Ethiraj

Incremental forming is a non-conventional metal forming process which is widely used to produce the customized parts especially in medical and aerospace industries. One of the challenges encountered in the single stage process is the maximum wall angle of the component that can be formed to a maximum possible depth without fracture. Many strategies have been tried by the researchers in the past to overcome this limitation. The aim of this research work is to investigate the effect of 5 stage incremental forming process in improving the formation of maximum wall angle to a possible height which is not possible in single stage incremental forming. Also, the different strain measurements are carried out to identify the region at which the fracture is likely to occur in the produced part. It is observed from single stage incremental forming process for a wall angle of 64, max. depth of 45mm is achieved in the part produced. The current 5 stage incremental forming process reached the max. height of 54 mm with a wall angle of 76 successfully. The maximum thickness strain of 75% is observed at a distance of 18mm from the bottom end of the flange of a formed component.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1287
Author(s):  
Fernando Bautista-Monsalve ◽  
Francisco García-Sevilla ◽  
Valentín Miguel ◽  
Jesús Naranjo ◽  
María Carmen Manjabacas

Single point incremental forming (SPIF) is a cheap and flexible sheet metal forming process for rapid manufacturing of complex geometries. Additionally, it is important for engineers to measure the surface finish of work pieces to assess their quality and performance. In this paper, a predictive model based on machine learning and computer vision was developed to estimate arithmetic mean surface roughness (Ra) and maximum peak to valley height (Rz) of Ti6Al4V parts obtained by SPIF. An image database was prepared to train different classification algorithms in accordance with a supervised learning approach. A speeded up robust feature (SURF) detector was used to obtain visual vocabulary so that the classifiers are able to group the photographs into classes. The experimental results indicated that the proposed predictive method shows great potential to determine the surface quality, as classifiers based on a support vector machine with a polynomial kernel are suitable for this purpose.


Author(s):  
Rakesh Lingam ◽  
Anirban Bhattacharya ◽  
Javed Asghar ◽  
N. Venkata Reddy

Incremental Sheet Metal Forming (ISMF) is a flexible sheet metal forming process that enables forming of complex three dimensional components by successive local deformations without using component specific tooling. ISMF is also regarded as die-less manufacturing process and in the absence of part-specific dies, geometric accuracy of formed components is inferior to that of their conventional counterparts. In Single Point Incremental Forming (SPIF), the simplest variant of ISMF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISMF namely Double Sided Incremental Forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicates that the supporting tool loses contact with the sheet after forming certain depth. Present work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflection due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap that occurs during forming (instead of using sine law). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths.


Sign in / Sign up

Export Citation Format

Share Document