scholarly journals Deep Space Exploration Strategy Based on Distant Retrograde Orbits Space Station

2021 ◽  
Vol 2006 (1) ◽  
pp. 012061
Author(s):  
Yingyi Zhang ◽  
Wei Zhang
2020 ◽  
Author(s):  
Christopher M. Watson ◽  
Bruce Clarke ◽  
Adrian Eilingsfeld ◽  
Nicolo Fantinato ◽  
Bakari Hassan ◽  
...  

2020 ◽  
Author(s):  
Graham K. Shunk ◽  
Xavier R. Gomez ◽  
Nils J. H. Averesch

AbstractThe greatest hazard for humans on deep-space exploration missions is radiation. To protect astronauts venturing out beyond Earth’s protective magnetosphere and sustain a permanent presence on Moon and/or Mars, advanced passive radiation protection is highly sought after. Due to the complex nature of space radiation, there is likely no one-size-fits-all solution to this problem, which is further aggravated by up-mass restrictions. In search of innovative radiation-shields, biotechnology holds unique advantages such as suitability for in-situ resource utilization (ISRU), self-regeneration, and adaptability. Certain fungi thrive in high-radiation environments on Earth, such as the contamination radius of the Chernobyl Nuclear Power Plant. Analogous to photosynthesis, these organisms appear to perform radiosynthesis, using pigments known as melanin to convert gamma-radiation into chemical energy. It is hypothesized that these organisms can be employed as a radiation shield to protect other lifeforms. Here, growth of Cladosporium sphaerospermum and its capability to attenuate ionizing radiation, was studied aboard the International Space Station (ISS) over a time of 30 days, as an analog to habitation on the surface of Mars. At full maturity, radiation beneath a ≈ 1.7 mm thick lawn of the melanized radiotrophic fungus (180° protection radius) was 2.17±0.35% lower as compared to the negative control. Estimations based on linear attenuation coefficients indicated that a ∼ 21 cm thick layer of this fungus could largely negate the annual dose-equivalent of the radiation environment on the surface of Mars, whereas only ∼ 9 cm would be required with an equimolar mixture of melanin and Martian regolith. Compatible with ISRU, such composites are promising as a means to increase radiation shielding while reducing overall up-mass, as is compulsory for future Mars-missions.


Author(s):  
Yury N. Makushenko ◽  
Rafail F. Murtazin ◽  
Dmitry S. Zarubin

The success of the International Space Station project has inspired the partners to review possible steps in space exploration beyond Low Earth Orbit. The Moon, Mars, or asteroids - the priorities of partners’ national programs could be different. Understanding of the deep space exploration viability by the joint team led partners to consideration regarding Cis-Lunar Spaceport which will become a Spaceport and should facilitate the implementation of the national programs. At the present time a concept of the Spaceport located on high-elliptical lunar orbit is being widely discussed. The Spaceport is considered to be a transportation hub supporting deep space exploration programs: missions to the Moon, asteroids, Mars and other natural and artificial objects. Different schemes of crew delivery to the lunar surface using Lunar Lander based and serviced at the Spaceport are compared in the paper. The Spaceport utilization significantly reduces transportation operations time limits and provides conditions for reusable lunar spacecraft implementation. Key words: Cislunar spaceport, high-elliptical lunar orbit, ascent module, descant module, reusable lunar crew vehicle.


2014 ◽  
Vol 721 ◽  
pp. 674-677
Author(s):  
Xue Lu Yao ◽  
Xiao Ran Zhu ◽  
Pu Yu

In deep space exploration, spacecrafts need to deliver large volume of time-insensitive scientific data to deep space station. However, power supply of spacecrafts is only from the solar energy and battery. That is to say, these spacecrafts are energy-limited. In order to reduce energy consumption, prolong the life of spacecrafts and send more data, the transmission protocol must be efficient and low-energy-waste. To achieve the aim, this paper proposes a network-coding-based mutually cooperative transmission protocol (NMCTP). Compared with the known protocols, i.e., COPE protocol and repeating transmission protocol, NMCTP can achieve higher diversity gain, and lower system outage probability.


Author(s):  
James F. Soeder ◽  
Anne Mcnelis ◽  
Raymond Beach ◽  
Nancy McNelis ◽  
Timothy Dever ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adriana Salatino ◽  
Claudio Iacono ◽  
Roberto Gammeri ◽  
Stefano T. Chiadò ◽  
Julien Lambert ◽  
...  

AbstractOrienting attention in the space around us is a fundamental prerequisite for willed actions. On Earth, at 1 g, orienting attention requires the integration of vestibular signals and vision, although the specific vestibular contribution to voluntary and automatic components of visuospatial attention remains largely unknown. Here, we show that unweighting of the otolith organ in zero gravity during parabolic flight, selectively enhances stimulus-driven capture of automatic visuospatial attention, while weakening voluntary maintenance of covert attention. These findings, besides advancing our comprehension of the basic influence of the vestibular function on voluntary and automatic components of visuospatial attention, may have operational implications for the identification of effective countermeasures to be applied in forthcoming human deep space exploration and habitation, and on Earth, for patients’ rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document