scholarly journals Insights into Artificial Neural Network techniques, and its Application in Steganography

2021 ◽  
Vol 2089 (1) ◽  
pp. 012043
Author(s):  
R Gurunath ◽  
Debabrata Samanta

Abstract Deep Steganography is a data concealment technology that uses artificial intelligence (AI) to automate the process of hiding and extracting information through layers of training. It enables for the automated generation of a cover depending on the concealed message. Previously, the technique depended on the existing cover to hide data, which limited the number of Steganographic characteristics available. Artificial intelligence and deep learning techniques have been used to steganography recently and the results are satisfactory. Although neural networks have demonstrated their ability to imitate human talents, it is still too early to draw comparisons between people and them. To improve their capabilities, neural networks are being employed in a number of disciplines, including steganography. Recurrent Neural Networks (RNN) is a widely used technology that automatically creates Stego-text regardless of payload volume. The features are extracted using a convolution neural network (CNN) based on the image. Perceptron, Multi-Layer Perceptron (MLP), Feed Forward Neural Network, Long Short Term Memory (LSTM) networks, and others are examples of this. In this research, we looked at all of the neural network approaches for Steganographic purposes in depth. This article also discusses the problems that each technology faces, as well as potential solutions.

The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.


2020 ◽  
Vol 49 (4) ◽  
pp. 482-494
Author(s):  
Jurgita Kapočiūtė-Dzikienė ◽  
Senait Gebremichael Tesfagergish

Deep Neural Networks (DNNs) have proven to be especially successful in the area of Natural Language Processing (NLP) and Part-Of-Speech (POS) tagging—which is the process of mapping words to their corresponding POS labels depending on the context. Despite recent development of language technologies, low-resourced languages (such as an East African Tigrinya language), have received too little attention. We investigate the effectiveness of Deep Learning (DL) solutions for the low-resourced Tigrinya language of the Northern-Ethiopic branch. We have selected Tigrinya as the testbed example and have tested state-of-the-art DL approaches seeking to build the most accurate POS tagger. We have evaluated DNN classifiers (Feed Forward Neural Network – FFNN, Long Short-Term Memory method – LSTM, Bidirectional LSTM, and Convolutional Neural Network – CNN) on a top of neural word2vec word embeddings with a small training corpus known as Nagaoka Tigrinya Corpus. To determine the best DNN classifier type, its architecture and hyper-parameter set both manual and automatic hyper-parameter tuning has been performed. BiLSTM method was proved to be the most suitable for our solving task: it achieved the highest accuracy equal to 92% that is 65% above the random baseline.


2016 ◽  
pp. 89-112
Author(s):  
Pushpendu Kar ◽  
Anusua Das

The recent craze for artificial neural networks has spread its roots towards the development of neuroscience, pattern recognition, machine learning and artificial intelligence. The theoretical neuroscience is basically converging towards the basic concept that the brain acts as a complex and decentralized computer which can perform rigorous calculations in a different approach compared to the conventional digital computers. The motivation behind the study of neural networks is due to their similarity in the structure of the human central nervous system. The elementary processing component of an Artificial Neural Network (ANN) is called as ‘Neuron'. A large number of neurons interconnected with each other mimic the biological neural network and form an ANN. Learning is an inevitable process that can be used to train an ANN. We can only transfer knowledge to the neural network by the learning procedure. This chapter presents the detailed concepts of artificial neural networks in addition to some significant aspects on the present research work.


2015 ◽  
Vol 760 ◽  
pp. 771-776
Author(s):  
Daniel Constantin Anghel ◽  
Nadia Belu

This paper presents the application of Artificial Neural Networks to predict the malfunction probability of the human-machine-environment system, in order to provide some guidance to designers of manufacturing processes. Artificial Neural Networks excel in gathering difficult non-linear relationships between the inputs and outputs of a system. We used, in this work, a feed forward neural network in order to predict the malfunction probability. The neural network is simulated with Matlab. The design experiment presented in this paper was realized at University of Pitesti, at the Faculty of Mechanics and Technology, Technology and Management Department.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4768 ◽  
Author(s):  
Zhaoqiong Huang ◽  
Ji Xu ◽  
Zaixiao Gong ◽  
Haibin Wang ◽  
Yonghong Yan

Deep neural networks (DNNs) have been shown to be effective for single sound source localization in shallow water environments. However, multiple source localization is a more challenging task because of the interactions among multiple acoustic signals. This paper proposes a framework for multiple source localization on underwater horizontal arrays using deep neural networks. The two-stage DNNs are adopted to determine both the directions and ranges of multiple sources successively. A feed-forward neural network is trained for direction finding, while the long short term memory recurrent neural network is used for source ranging. Particularly, in the source ranging stage, we perform subarray beamforming to extract features of sources that are detected by the direction finding stage, because subarray beamforming can enhance the mixed signal to the desired direction while preserving the horizontal-longitudinal correlations of the acoustic field. In this way, a universal model trained in the single-source scenario can be applied to multi-source scenarios with arbitrary numbers of sources. Both simulations and experiments in a range-independent shallow water environment of SWellEx-96 Event S5 are given to demonstrate the effectiveness of the proposed method.


2020 ◽  
Vol 5 (2) ◽  
pp. 221-224
Author(s):  
Joy Oyinye Orukwo ◽  
Ledisi Giok Kabari

Diabetes has always been a silent killer and the number of people suffering from it has increased tremendously in the last few decades. More often than not, people continue with their normal lifestyle, unaware that their health is at severe risk and with each passing day diabetes goes undetected. Artificial Neural Networks have become extensively useful in medical diagnosis as it provides a powerful tool to help analyze, model and make sense of complex clinical data. This study developed a diabetes diagnosis system using feed-forward neural network with supervised learning algorithm. The neural network is systematically trained and tested and a success rate of 90% was achieved.


In this paper, we propose a method to utilize machine learning to automate the system of classifying and transporting large quantities of logistics. First, establish an environment similar to the task of transferring logistics to the desired destination, and set up basic rules for classification and transfer. Next, each of the logistics that need sorting and transportation is defined as one entity, and artificial intelligence is introduced so that each individual can go to an optimal route without collision between the objects to the destination. Artificial intelligence technology uses artificial neural networks and uses genetic algorithms to learn neural networks. The artificial neural network is generated by each chromosome, and it is evolved based on the most suitable artificial neural network, and a score is given to each operation to evaluate the fitness of the neural network. In conclusion, the validity of this algorithm is evaluated through the simulation of the implemented system.


Author(s):  
Suhail Ahamed ◽  
Gabriele Weiler ◽  
Karl Boden ◽  
Kai Januschowski ◽  
Matthias Stennes ◽  
...  

The automation of medical documentation is a highly desirable process, especially as it could avert significant temporal and monetary expenses in healthcare. With the help of complex modelling and high computational capability, Automatic Speech Recognition (ASR) and deep learning have made several promising attempts to this end. However, a factor that significantly determines the efficiency of these systems is the volume of speech that is processed in each medical examination. In the course of this study, we found that over half of the speech, recorded during follow-up examinations of patients treated with Intra-Vitreal Injections, was not relevant for medical documentation. In this paper, we evaluate the application of Convolutional and Long Short-Term Memory (LSTM) neural networks for the development of a speech classification module aimed at identifying speech relevant for medical report generation. In this regard, various topology parameters are tested and the effect of the model performance on different speaker attributes is analyzed. The results indicate that Convolutional Neural Networks (CNNs) are more successful than LSTM networks, and achieve a validation accuracy of 92.41%. Furthermore, on evaluation of the robustness of the model to gender, accent and unknown speakers, the neural network generalized satisfactorily.


Author(s):  
Siranush Sargsyan ◽  
Anna Hovakimyan

The study and application of neural networks is one of the main areas in the field of artificial intelligence. The effectiveness of the neural network depends significantly on both its architecture and the structure of the training set. This paper proposes a probabilistic approach to evaluate the effectiveness of the neural network if the images intersect in the receptor field. A theorem and its corollaries are proved, which are consistent with the results obtained by a different path for a perceptron-type neural network.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


Sign in / Sign up

Export Citation Format

Share Document