scholarly journals Artificial Intelligence Techniques for Phishing Detection

The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.

In this paper, we propose a method to utilize machine learning to automate the system of classifying and transporting large quantities of logistics. First, establish an environment similar to the task of transferring logistics to the desired destination, and set up basic rules for classification and transfer. Next, each of the logistics that need sorting and transportation is defined as one entity, and artificial intelligence is introduced so that each individual can go to an optimal route without collision between the objects to the destination. Artificial intelligence technology uses artificial neural networks and uses genetic algorithms to learn neural networks. The artificial neural network is generated by each chromosome, and it is evolved based on the most suitable artificial neural network, and a score is given to each operation to evaluate the fitness of the neural network. In conclusion, the validity of this algorithm is evaluated through the simulation of the implemented system.


Author(s):  
Siranush Sargsyan ◽  
Anna Hovakimyan

The study and application of neural networks is one of the main areas in the field of artificial intelligence. The effectiveness of the neural network depends significantly on both its architecture and the structure of the training set. This paper proposes a probabilistic approach to evaluate the effectiveness of the neural network if the images intersect in the receptor field. A theorem and its corollaries are proved, which are consistent with the results obtained by a different path for a perceptron-type neural network.


InterConf ◽  
2021 ◽  
pp. 443-449
Author(s):  
Oleksandr Shmatko ◽  
German Zviertsev

There are many methods for detecting network attacks, but since attacks are constantly changing, special databases of rules or signatures to detect attacks require continuous administration, it becomes necessary to add new rules. One of the ways to eliminate this problem is to use neural networks as a mechanism to detect network attacks. In contrast to the signature-based approach, the neural network analyzes information and provides information about the attacks that it is trained to recognize. In addition, neural networks have the advantage of being able to adapt to previously unknown attacks and detect them. That is why the development of software based on neural networks is relevant.


2021 ◽  
Vol 41 (3) ◽  
pp. e87737
Author(s):  
Alcineide Pessoa ◽  
Gean Sousa ◽  
Luiz Maués ◽  
Felipe Alvarenga ◽  
Débora Santos

The execution of public sector construction projects often requires the use of financial resources not foreseen during the tendering phase, which causes management problems. This study aims to present a computational model based on artificial intelligence, specifically on artificial neural networks, capable of forecasting the execution cost of construction projects for Brazilian educational public buildings. The database used in the training and testing of the neural model was obtained from the online system of the Ministry of Education. The neural network used was a multilayer perceptron as a backpropagation algorithm optimized through the gradient descent method. To evaluate the obtained results, the mean absolute percentage errors and the Pearson correlation coefficients were calculated. Some hypothesis tests were also carried out in order to verify the existence of significant differences between real values and those obtained by the neural network. The average percentage errors between predicted and actual values varied between 5% and 9%, and the correlation values reached 0,99. The results demonstrated that it is possible to use artificial intelligence as an auxiliary mechanism to plan construction projects, especially in the public sector.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012043
Author(s):  
R Gurunath ◽  
Debabrata Samanta

Abstract Deep Steganography is a data concealment technology that uses artificial intelligence (AI) to automate the process of hiding and extracting information through layers of training. It enables for the automated generation of a cover depending on the concealed message. Previously, the technique depended on the existing cover to hide data, which limited the number of Steganographic characteristics available. Artificial intelligence and deep learning techniques have been used to steganography recently and the results are satisfactory. Although neural networks have demonstrated their ability to imitate human talents, it is still too early to draw comparisons between people and them. To improve their capabilities, neural networks are being employed in a number of disciplines, including steganography. Recurrent Neural Networks (RNN) is a widely used technology that automatically creates Stego-text regardless of payload volume. The features are extracted using a convolution neural network (CNN) based on the image. Perceptron, Multi-Layer Perceptron (MLP), Feed Forward Neural Network, Long Short Term Memory (LSTM) networks, and others are examples of this. In this research, we looked at all of the neural network approaches for Steganographic purposes in depth. This article also discusses the problems that each technology faces, as well as potential solutions.


2019 ◽  
Vol 11 (1) ◽  
pp. 145-148
Author(s):  
Zsolt Barnabás Neurohr ◽  
Edit Tóthné Laufer

Abstract Artificial intelligence is one of the most dynamically developing areas of science today. Although it is not yet an integral part of our lives to use artificial intelligence solutions, it can be seen in terms of development, that it will become available to everyone in the coming decades, and not be exclusive for the richest. An important part of artificial intelligence research are the so-called soft calculation methods, the most important of which are fuzzy logic, genetic algorithms and neural networks. In this article, the authors present a method of identifying certain traffic signs with the help of the neural network.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e046265
Author(s):  
Shotaro Doki ◽  
Shinichiro Sasahara ◽  
Daisuke Hori ◽  
Yuichi Oi ◽  
Tsukasa Takahashi ◽  
...  

ObjectivesPsychological distress is a worldwide problem and a serious problem that needs to be addressed in the field of occupational health. This study aimed to use artificial intelligence (AI) to predict psychological distress among workers using sociodemographic, lifestyle and sleep factors, not subjective information such as mood and emotion, and to examine the performance of the AI models through a comparison with psychiatrists.DesignCross-sectional study.SettingWe conducted a survey on psychological distress and living conditions among workers. An AI model for predicting psychological distress was created and then the results were compared in terms of accuracy with predictions made by psychiatrists.ParticipantsAn AI model of the neural network and six psychiatrists.Primary outcomeThe accuracies of the AI model and psychiatrists for predicting psychological distress.MethodsIn total, data from 7251 workers were analysed to predict moderate and severe psychological distress. An AI model of the neural network was created and accuracy, sensitivity and specificity were calculated. Six psychiatrists used the same data as the AI model to predict psychological distress and conduct a comparison with the AI model.ResultsThe accuracies of the AI model and psychiatrists for predicting moderate psychological distress were 65.2% and 64.4%, respectively, showing no significant difference. The accuracies of the AI model and psychiatrists for predicting severe psychological distress were 89.9% and 85.5%, respectively, indicating that the AI model had significantly higher accuracy.ConclusionsA machine learning model was successfully developed to screen workers with depressed mood. The explanatory variables used for the predictions did not directly ask about mood. Therefore, this newly developed model appears to be able to predict psychological distress among workers easily, regardless of their subjective views.


Sign in / Sign up

Export Citation Format

Share Document