scholarly journals Principles of discrete-event modeling of physical processes during technical surfaces contact interaction

2021 ◽  
Vol 2094 (2) ◽  
pp. 022019
Author(s):  
A A Rachishkin

Abstract The article discusses the advantages and disadvantages of computer modeling used in physical experiments field on rough surfaces contact interaction. Methods for constructing the software model are given. The description of a single irregularity in the form of revolution ellipsoid segment is presented and an algorithm for rough surface three-dimensional modeling based on it is proposed. Some assumptions made for generating surface topography do not significantly affect the simulation validity. Taking into account the individual parameters of each irregularity and the algorithm for their distribution make it possible to create inhomogeneous rough surfaces that are close to real ones relative to the physical experiments being carried out. The general principles of the software architecture and the data storage model of discrete-event modeling system of rough surface contact interaction are described. The developed software can be used for modeling the rough surfaces contact interaction, for researching of tribo-interface units’ parameters, predicting the characteristics of frictional interaction and tribotechnical tests computer simulation.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Yuqin Wen ◽  
Jinyuan Tang ◽  
Wei Zhou ◽  
Lin Li

Abstract The 3D rough surface modeling and contact analysis is a difficult problem in the study of rough surface contact. In this paper, a new method for reconstruction and contact analysis of asperities on 3D rough surfaces is proposed based on real rough surfaces. Watershed algorithm is used to segment and determine the area of asperities on the rough surface. According to the principle of minimum mean square error, ellipsoid fitting is carried out on asperities. Based on the elastic-plastic contact model of a single ellipsoidal asperity, a stable and efficient method for 3D rough surface contact analysis and calculation is proposed. Compared with existing calculating methods, the present method has the following characteristics: (1) the constructed surface asperity is closer to the real asperity in contact, and the calculation of asperity parameters has better stability under different sampling intervals and (2) the contact pressure, contact area, and other contact parameters of the 3D rough surface are calculated with high accuracy and efficiency, and the calculation convergence is desirable. The reconstruction and contact analysis method of the 3D rough surface asperity proposed in this paper provides a more accurate reconstruction and calculation method for the study of contact fatigue life and wear failure of rough surfaces.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly rough surface. The requirement for a roughness-element diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly-rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly-rough surface. The requirement for a roughness element-diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly-rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly-rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


2005 ◽  
Vol 127 (1) ◽  
pp. 223-229 ◽  
Author(s):  
R. P. Glovnea ◽  
A. V. Olver ◽  
H. A. Spikes

In previous work it was shown that some functionalized polymers used as viscosity index improvers are able to form thick boundary lubricating films. This behavior results from adsorption of the polymer on metal surfaces to form a layer of enhanced viscosity adjacent to the surface. In the current work the behavior of one such polymer in rough surface contact conditions is studied, using both model and real rough surfaces. It is found that the polymer is able to form a thick boundary film in rough surface contact, just as it does with smooth surfaces. It is also shown that the effect of this boundary film is to significantly reduce friction in rolling-sliding, rough surface, lubricated contact.


Author(s):  
Stephen T. McClain ◽  
B. Keith Hodge ◽  
Jeffrey P. Bons

The discrete-element method for predicting skin friction for turbulent flow over rough surfaces considers the drag on the surface to result from the combination of the skin friction on the flat part of the surface and the drag on the individual roughness elements that protrude into the boundary layer. To adequately analyze flow over a randomly-rough surface using the discrete-element method, the blockage fraction and the roughness element cross-section area distributions as a function of height must be measured. Taylor, in 1983, proposed a method for evaluating the blockage fraction and cross-sectional areas distributions, assuming circular cross sections, using two-dimensional profilometer traces. With the advent of three-dimensional profilometery, the geometry of a randomly-rough surface can be completely characterized. Two randomly-rough surfaces found on high-hour gas-turbine blades were characterized using a Taylor-Hobson Form Talysurf Series 2 profilometer. A method for using the three-dimensional profilometer output to determine the geometry input required in the discrete-element method for randomly-rough surfaces is presented in this paper, Part 1. Part 2 extends the validation of the discrete-element roughness method to closely-packed, randomly-rough surfaces. The procedure for handling randomly-rough surfaces is described, and the characterizations for the surfaces used to validate the discrete element model in Part 2 are presented.


1997 ◽  
Vol 119 (3) ◽  
pp. 375-384 ◽  
Author(s):  
Dong Zhu ◽  
Xiaolan Ai

This paper presents a numerical solution for the elastohydrodynamic lubrication in point contacts, using optically measured three-dimensional rough surface profiles as input data. The multi-grid computer program originally developed by Ai and Cheng (1993, 1994) is modified, so that both contacting surfaces can be three-dimensional measured rough surfaces moving at different velocities. Many different engineering surfaces are measured and analyzed in the present study, demonstrating that the numerical analysis is practical for real surfaces of bearings, cams, gears and other components, as long as a significant EHL film still exists. In addition, discussions are given in this paper for the effects of three-dimensional rough surface topography, which is related to machining process. It appears that, for the circular contact cases analyzed, surface roughness texture and orientation do not have a significant effect on the average film thickness, but they do affect the maximum pressure peak height and asperity deformation in the contact zone considerably.


1997 ◽  
Vol 119 (3) ◽  
pp. 481-485 ◽  
Author(s):  
H. M. Stanley ◽  
T. Kato

Elastic contact between a rigid plane and a halfspace whose surface height is described by a bandwidth-limited Fourier series is considered. The surface normal displacements and contact pressures are found by a numerical technique that exploits the structure of the Fast Fourier Transform (FFT) and an exact result in linear elasticity. The multiscale nature of rough surface contact is implicit to the method, and features such as contact agglomeration and asperity interaction—a source of difficulty for asperity-based models—evolve naturally. Both two-dimensional (2-D) and three-dimensional (3-D) contact are handled with equal ease. Finally, the implementation is simple, compact, and fast.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
S. Zhang ◽  
H. Song ◽  
S. Sandfeld ◽  
X. Liu ◽  
Y. G. Wei

Abstract The Greenwood–Williamson (GW) model has been one of the commonly used contact models to study rough surface contact problems during the past decades. While this has been a successful model, it still has a number of restrictions: (i) surface asperities are spheres; (ii) the overall deformation must be assumed to be small enough, such that there is no interaction between asperities, i.e., they are independent of each other; and (iii) asperity deformation remains elastic. This renders the GW model unrealistic in many situations. In the present work, we resolve above restrictions in a discrete version of the GW model: instead of spherical asperities, we assumed that the surface consists of three-dimensional sinusoidal asperities which appear more similar to asperities on a rough surface. For single asperity mechanical response, we propose a Hertz-like analytical solution for purely elastic deformation and a semi-analytical solution based on finite element method (FEM) for elastic–plastic deformation. The asperity interaction is accounted for by discretely utilizing a modified Boussinesq solution without consideration of asperity merger. It is seen that the asperity interaction effect is more than just the delay of contact as shown in the statistical model, it also contributes to the loss of linearity between the contact force and the contact area. Our model also shows that: for elastic contact, using spherical asperities results in a larger average contact pressure than using sinusoids; when plasticity is taken into account, using a sphere to represent asperities results in a softer response as compared with using sinusoids. It is also confirmed that sinusoidal asperities are a much better description than spheres, by comparison with fully resolved FEM simulation results for computer-generated rough surfaces.


2018 ◽  
Author(s):  
Davi R. Ortega ◽  
Catherine M. Oikonomou ◽  
H. Jane Ding ◽  
Prudence Rees-Lee ◽  
Alexandria ◽  
...  

AbstractThree-dimensional electron microscopy techniques like electron tomography provide valuable insights into cellular structures, and present significant challenges for data storage and dissemination. Here we explored a novel method to publicly release more than 11,000 such datasets, more than 30 TB in total, collected by our group. Our method, based on a peer-to-peer file sharing network built around a blockchain ledger, offers a distributed solution to data storage. In addition, we offer a user-friendly browser-based interface, https://etdb.caltech.edu, for anyone interested to explore and download our data. We discuss the relative advantages and disadvantages of this system and provide tools for other groups to mine our data and/or use the same approach to share their own imaging datasets.


Sign in / Sign up

Export Citation Format

Share Document