boundary film
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 2131 (4) ◽  
pp. 042031
Author(s):  
M V Boiko ◽  
A V Sidashov ◽  
T G Boiko ◽  
A A Bicherov

Abstract The tasks of the development of the Far North, the Arctic and the Antarctic require ensuring the operability of equipment units in low temperatures. To solve this problem, it is necessary to develop lubricants using new synthetic oils, a distinctive feature of which are low pour points. On the basis of polyethylsiloxane fluid and petroleum oil, we have developed a gear oil for the Arctic latitudes, which is efficient at temperatures down to -75 ° C (TMarktic). It is shown TMarktic’s antifriction properties are better than those of TSgip helicopter tail gear oil. The combined use of XPS and IR-Fourier methods for the analysis of the friction surface made it possible to conclude that the formation of the boundary film involves both antiwear additive molecules, which are part of the modified oil, due to the P-O, P=O, S=O bonds, so and molecules of polyethylsiloxane liquid due to C-O and Si-O bonds. Secondary surface structures are formed by TMarctic oil on the surface of iron oxide and include hydrocarbon and siloxane fragments. The high antiwear and extreme pressure properties of TMarktic are due to free sulfur and bound in iron sulfide.


2021 ◽  
pp. 77-80
Author(s):  

The influence of additives of naphthalene derivatives on the formation of boundary lubricating layers during friction in a dioctyl sebacate synthetic oil is considered. It is determined, that the activity of the additives is determined by the presence of acidic groups in their molecules and the ability to form complex compounds with metals. Keywords: boundary film, dioctyl sebacate, naphthalene derivatives, complex formation, lubricating properties [email protected]


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2481
Author(s):  
Alok Dhaundiyal ◽  
Laszlo Toth

So far, the torrefaction process has been merely discussed based on the physical and chemical characteristics of the final product, but the mechanism has not been yet pondered and investigated. Thus far, microwave torrefaction has been predominately used for thermal pre-treatment; therefore, a paradigm shift in the methodology has been introduced by using a Joule heating system. The article mainly focuses on the thermal engineering aspect of the torrefaction process. The densified black pine underwent thermal pre-treatment at a temperature of 523 K. The furnace used for torrefaction was initially improvised to carry out thermal degradation at quasi-static/dynamic conditions. A 3D PDE thermal model was developed to determine the numerical solution and temperature distribution across a black pine pellet. To compare the effect of the linear ramping profile, time-dependent as well as fixed Dirichlet conditions were applied to the proposed model. The mass distribution, duration of the torrefaction process, the effect of Nusselt and Reynold’s number of inert gas, and thermal history are some of the factors whose influence on the numerical solution was investigated. The simulation of thermal pre-treatment and its effect on the heat transfer characteristic was examined with help of a PDE thermal model, whereas the numerical solution of diffusion of the product of reactions was determined by solving the partial differential equations with the help of the discretisation method (PDEPE). The densification of black pine was performed in a ring die, whereas initial milling of biomass was carried out using a 1.5 mm sieve size. The system was found to have a homogeneous distribution in energy and temperature with time, whereas the amplitude of heat flux along the radial direction was reduced by 15% if the same pellet underwent torrefaction for a duration of 5 min in dynamic mode. Similarly, a 64.46% drop in amplitude of heat flux along the azimuth plane could be seen while performing torrefaction in a time-dependent thermal history. However, the relative amplitude of the heat flux at the centre of the pellet was estimated to be lowered by 98.41% along the vertical axis for heating a pellet in a quasi-static condition. The net change in the mass fraction of carbon dioxide across the boundary film was seen to be 40% higher than that of carbon monoxide. The rate of change of mass fraction of carbon monoxide across the boundary film was increased by 7–11% with the increase in torrefaction time. A 6.8% rise in the evaporation of water was noticed during the first half interval of torrefaction (from 5 min to 10 min). In the second half, from 10 min to 15 min, it was merely increased by 5.8%. A relative drop of 17.24% in water evaporation was estimated in the dynamic state of the system.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 391
Author(s):  
Henrik Borgström

Today, the use of solution hardened ductile iron is limited by brittleness under certain conditions. If chassis components are subjected to loads having high strain rates exceeding those imposed during tensile testing at sub-zero temperatures, unexpected failure can occur. Therefore, it is the purpose of this review to discuss three main mechanisms, which have been related to brittle failure in high silicon irons: intercritical embrittlement, the integrity of the ferritic matrix and deformation mechanisms in the graphite. Intercritical embrittlement is mainly attributed to the formation of Mg- and S-rich grain boundary films. The formation of these films is suppressed if the amount of free Mg- and MgS-rich inclusions is limited by avoiding excess Mg and/or by the passivation of free Mg with P. If the grain boundary film is not suppressed, the high silicon iron has very low elongations in the shakeout temperature regime: 300 to 500 °C. The integrity and strength of the ferrite are limited by the reduced ordering of the silicumferrite with increasing silicon content, once the “ordinary” ferrite is saturated at 3% silicon, depending on the cooling conditions. Finally, the graphite damaging mechanisms are what dictate the properties most at low temperatures (sub −20 °C).


Author(s):  
Xiaochun Xu ◽  
Romain Privat ◽  
Jean-Noël Jaubert ◽  
Yongfeng Qu ◽  
Marc Bonnissel

The vaporization of drops of highly vaporizable liquids falling inside a cryogenic environment is far from being a trivial matter as it assumes harnessing specialized thermodynamics and physical equations. In this paper, a multi-component falling droplet evaporation model was developed for simulating the spray cooling process. The falling speed of the sprayed droplets was calculated with the momentum equations considering three forces (gravity, buoyancy and drag) applied to a droplet. To evaluate the mass and heat transfer between the sprayed droplet and the surrounding gas phase, a gaseous boundary film of sufficient thinness was assumed to envelope the droplet, while the Peng-Robinson equation of state was used for estimating the phase equilibrium properties on the droplet’s surface. Based on the relevant conservation equations of mass and energy, the key properties (such as temperature, pressure and composition) of the liquid and gas phases in the tank during the spray process could be simulated. To conclude, the simulation algorithm is proposed.


Author(s):  
I.L. Trofimov ◽  
M.M. Svirid ◽  
S.V. Boichenko ◽  
A.V. Yakovlieva ◽  
S.V. Ternovenko ◽  
...  

Presented studies are related to the spheres of aviation and machine-building. Anti-wear properties of conventional jet fuel, fatty acids ethyl esters bio-additives derived from camelina oil and their blends were investigated experimentally. It was found that lubricity of bio-additive is significantly higher comparing to conventional oil-derived jet fuel. It was found that addition of bio-additive into the composition of jet fuel leads to strengthening of boundary film, decreasing of friction coefficient and improvement of anti-wear properties of fuel blends. The mechanism of fatty acids esters influence on improvement of anti-wear properties of jet fuel was substantiated. It was shown that camelina oil fatty acids esters positively influence on lubricating ability of oil-derived jet fuels and may be used in order to improve anti-wear properties of conventional jet fuels. Ref. 15, Fig. 2, Tabl. 1.


Friction ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Jiajia Jia ◽  
Guangbin Yang ◽  
Chunli Zhang ◽  
Shengmao Zhang ◽  
Yujuan Zhang ◽  
...  

AbstractA magnetic ionic liquid (abridged as MIL) [C6mim]5[Dy(SCN)8] was prepared and used as the magnetic lubricant of a steel-steel sliding pair. The tribological properties of the as-prepared MIL were evaluated with a commercially obtained magnetic fluid lubricant (abridged as MF; the mixture of dioctyl sebacate and Fe3O4, denoted as DIOS-Fe3O4) as a control. The lubrication mechanisms of the two types of magnetic lubricants were discussed in relation to worn surface analyses by SEM-EDS, XPS, and profilometry, as well as measurement of the electric contact resistance of the rubbed steel surfaces. The results revealed that the MIL exhibits better friction-reducing and antiwear performances than the as-received MF under varying test temperatures and loads. This is because the MIL participates in tribochemical reactions during the sliding process, and forms a boundary lubrication film composed of Dy2O3, FeS, FeSO4, nitrogen-containing organics, and thioether on the rubbed disk surface, thereby reducing the friction and wear of the frictional pair. However, the MF is unable to form a lubricating film on the surface of the rubbed steel at 25 °C, though it can form a boundary film consisting of Fe3O4 and a small amount of organics under high temperature. Furthermore, the excessive Fe3O4 particulates that accumulate in the sliding zone may lead to enhanced abrasive wear of the sliding pair.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Ao Fan ◽  
Connie Wiita ◽  
Robert J. Waltman

The tribological properties of some novel single component perfluoropolyether (PFPE) boundary lubricants with chemically integrated mixture end groups are investigated. Chemically integrated mixture end groups composed of hydroxyl- and anisole-terminated PFPE boundary lubricant films on the –(CF2CF2CF2O)– main chain are reported. These PFPE-based boundary lubricants explore a new method by which single component PFPE lubricants with mixture end groups might be used to tailor boundary film properties instead of using physical mixtures of two or more PFPEs with different end groups. Lubricant transfer to the low-flying read/write head, head wear, and siloxane adsorption as a function of PFPE film thickness and of type are compared. Normalization of the data to the monolayer fraction instead of film thickness allows direct comparison between anisole- and hydroxyl-terminated PFPEs. Lubricant transfer to the head and head wear are independent of the functional end groups. Siloxane adsorption decreases with increasing anisole substitution of the hydroxyl groups. One-component PFPEs with mixed end groups provide a methodology by which boundary film properties could be adjusted.


Author(s):  
Miguel A. Gutierrez ◽  
Michael Gydesen ◽  
Caitlin Marcellus ◽  
Ivan Puchades ◽  
Brian Landi ◽  
...  

In this study, the tribological behavior of the Trihexyl tetradecylphosphonium-bis(2,4,4-trimethylpentyl)phosphinate [THTDP][Phos] ionic liquid with and without single-wall carbon nanotubes (SWCNT) dispersion as a thin boundary layer was intended for investigation. However, the surface heat treatment process was not sufficient to form a thin film on the sample surfaces. Thus, in each test condition, the lubricating agents were used as external (liquid) lubricants. Specifically, [THTDP][Phos] and ([THTDP][Phos]+0.1 wt.% SWCNT) boundary film layers were applied on 6061-T6 aluminum alloy disk samples and tested under sliding contact with 1.5 mm diameter 420C stainless steel balls using a ball-on-flat linearly reciprocating tribometer. A commercially available Mobil Super 10W-40 engine oil (MS10W40) was also tested and used as this investigation’s datum. The tribological behavior of [THTDP][Phos] and ([THTDP][Phos]+SWCNT) boundary film layers was analyzed via wear volume calculations from optical microscopy measurements, as well as by observation of the transient coefficient of friction (COF) obtained through strain gauge measurements made directly from the reciprocating member of the tribometer. Results indicate the potential for reduction of wear volume and coefficient of friction in the IL lubricated steel-on-aluminum sliding contact through (SWCNT) dispersion in the ionic liquid. Wear results are based on measurements obtained using optical microscopy (OM). Results discussed display improved tribological performance for both [THTDP][Phos] and ([THTDP][Phos]+SWCNT) over baseline MS10W40 oil lubricant for both roughness values tested for the steel-on-aluminum contact. No measurable improvements were observed between [THTDP][Phos] and ([THTDP][Phos]+SWCNT) tests.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Shanhong Wan ◽  
A. Kiet Tieu ◽  
Qiang Zhu ◽  
Hongtao Zhu ◽  
Shaogang Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document