scholarly journals Quantum Key Distribution by Drone

2021 ◽  
Vol 2095 (1) ◽  
pp. 012080
Author(s):  
Z. Wang ◽  
Z. Guo ◽  
G. Mogos ◽  
Z. Gao

Abstract A cryptographic communication system is secure from a practical point of view if the encryption scheme can be broken after X years, where X is determined by security needs and existing technology. Quantum cryptography does not offer a complete solution for all cryptographic problems: secure keys, encryption algorithms based on them, message authentication and finding ways to detect/prevent interception; but it can be seen as a complement to standard symmetric cryptographic systems. This paper presents the implementation of the BB84 quantum key distribution protocol on mobile systems - Amov-lab’s Z410 drone with T-engine 2216 - and tracks the error rate obtained in flight conditions.

2005 ◽  
Vol 13 (23) ◽  
pp. 9415 ◽  
Author(s):  
Yun-kun Jiang ◽  
Xiang-Bin Wang ◽  
Bao-Sen Shi ◽  
Akihisa Tomita

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang

AbstractThe mediated semi-quantum key distribution (MSQKD) protocol is an important research issue that lets two classical participants share secret keys securely between each other with the help of a third party (TP). However, in the existing MSQKD protocols, there are two improvable issues, namely (1) the classical participants must be equipped with expensive detectors to avoid Trojan horse attacks and (2) the trustworthiness level of TP must be honest. To the best of our knowledge, none of the existing MSQKD protocols can resolve both these issues. Therefore, this study takes Bell states as the quantum resource to propose a MSQKD protocol, in which the classical participants do not need a Trojan horse detector and the TP is dishonest. Furthermore, the proposed protocol is shown to be secure against well-known attacks and the classical participants only need two quantum capabilities. Therefore, in comparison to the existing MSQKD protocols, the proposed protocol is better practical.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012011
Author(s):  
Chan Myae Hein ◽  
T F Kamalov

Abstract A new eavesdropping strategy is proposed for the Quantum Key Distribution (QKD) protocol. This scheme represents a new kind of intercept/resend strategy based on Bell’s theorem. Quantum key distribution (QKD) provides the foremost reliable form of secure key exchange, using only the input-output statistics of the devices to realize information-theoretic security. In this paper, we present an improved QKD protocol that can simultaneously distribute the quantum secret key. We are already using the QKD protocol with simulated results matched completely with the theoretical concepts.


2015 ◽  
Vol 15 (15&16) ◽  
pp. 1295-1306
Author(s):  
Zoe Amblard ◽  
Francois Arnault

The Ekert quantum key distribution protocol [1] uses pairs of entangled qubits and performs checks based on a Bell inequality to detect eavesdropping. The 3DEB protocol [2] uses instead pairs of entangled qutrits to achieve better noise resistance than the Ekert protocol. It performs checks based on a Bell inequality for qutrits named CHSH-3 and found in [3, 4]. In this paper, we present a new protocol, which also uses pairs of entangled qutrits, but gaining advantage of a Bell inequality which achieves better noise resistance than the one used in 3DEB. The latter inequality is called here hCHSH-3 and was discovered in [5]. For each party, the hCHSH-3 inequality involves four observables already used in CHSH-3 but also two products of observables which do not commute. We explain how the parties can measure the observables corresponding to these products and thus are able to check the violation of hCHSH-3. In the presence of noise, this violation guarantees the security against a local Trojan horse attack. We also designed a version of our protocol which is secure against individual attacks.


Sign in / Sign up

Export Citation Format

Share Document