scholarly journals Influence of the surface DBD parameters on the streaks development in the boundary layer

2021 ◽  
Vol 2100 (1) ◽  
pp. 012027
Author(s):  
D Yarantsev ◽  
I Selivonin ◽  
I Moralev

Abstract The effect of the filamentary barrier discharge parameters on the boundary layer streaks generation and instability was studied. The streaks are formed near the constricted discharge channels due to vortices formation driven by spanwise Coulomb volume force. The secondary instability of the streaky structures can lead to the laminar-turbulent transition of the boundary layer. This work demonstrates that supply voltage parametrs affect the period of the constricted channels and thus the streaks transversal period within the boundary layer. For the various streaks periods, different modes of streak instability are shown to dominate.

2014 ◽  
Vol 745 ◽  
pp. 132-163 ◽  
Author(s):  
Shintaro Imayama ◽  
P. Henrik Alfredsson ◽  
R. J. Lingwood

AbstractThis paper describes a detailed experimental study using hot-wire anemometry of the laminar–turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, $R$, of $\sim $510, i.e. at the onset of Lingwood’s (J. Fluid Mech., vol. 299, 1995, pp. 17–33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of $\sim $550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around $R=585$, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately $R=565$ to 590 and to a fully turbulent boundary layer above 650.


2019 ◽  
Vol 50 (5) ◽  
pp. 461-481
Author(s):  
Sergei Vasilyevich Aleksandrov ◽  
Evgeniya Andreevna Aleksandrova ◽  
Volf Ya. Borovoy ◽  
Andrey Vyacheslavovich Gubernatenko ◽  
Vladimir Evguenyevich Mosharov ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2102 ◽  
Author(s):  
Torben Reichstein ◽  
Alois Peter Schaffarczyk ◽  
Christoph Dollinger ◽  
Nicolas Balaresque ◽  
Erich Schülein ◽  
...  

Knowledge about laminar–turbulent transition on operating multi megawatt wind turbine (WT) blades needs sophisticated equipment like hot films or microphone arrays. Contrarily, thermographic pictures can easily be taken from the ground, and temperature differences indicate different states of the boundary layer. Accuracy, however, is still an open question, so that an aerodynamic glove, known from experimental research on airplanes, was used to classify the boundary-layer state of a 2 megawatt WT blade operating in the northern part of Schleswig-Holstein, Germany. State-of-the-art equipment for measuring static surface pressure was used for monitoring lift distribution. To distinguish the laminar and turbulent parts of the boundary layer (suction side only), 48 microphones were applied together with ground-based thermographic cameras from two teams. Additionally, an optical camera mounted on the hub was used to survey vibrations. During start-up (SU) (from 0 to 9 rpm), extended but irregularly shaped regions of a laminar-boundary layer were observed that had the same extension measured both with microphones and thermography. When an approximately constant rotor rotation (9 rpm corresponding to approximately 6 m/s wind speed) was achieved, flow transition was visible at the expected position of 40% chord length on the rotor blade, which was fouled with dense turbulent wedges, and an almost complete turbulent state on the glove was detected. In all observations, quantitative determination of flow-transition positions from thermography and microphones agreed well within their accuracy of less than 1%.


Sign in / Sign up

Export Citation Format

Share Document