streaky structures
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 2100 (1) ◽  
pp. 012027
Author(s):  
D Yarantsev ◽  
I Selivonin ◽  
I Moralev

Abstract The effect of the filamentary barrier discharge parameters on the boundary layer streaks generation and instability was studied. The streaks are formed near the constricted discharge channels due to vortices formation driven by spanwise Coulomb volume force. The secondary instability of the streaky structures can lead to the laminar-turbulent transition of the boundary layer. This work demonstrates that supply voltage parametrs affect the period of the constricted channels and thus the streaks transversal period within the boundary layer. For the various streaks periods, different modes of streak instability are shown to dominate.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Sattaya Yimprasert ◽  
Mathias Kvick ◽  
P. Henrik Alfredsson ◽  
Masaharu Matsubara

Abstract The present study experimentally determines the transitional Reynolds number range for plane channel flow and characterizes its transitional state. The pressure along the channel is measured to determine the skin friction coefficient as function of Reynolds number from the laminar state, through the transitional region into the fully turbulent state. The flow structure was studied through flow visualisation which shows that as the Reynolds number increases from the laminar state the transitional region starts showing randomly occurring turbulent spots. With increasing Reynolds number the spots shift into oblique patches and bands of small scale turbulence that form across the channel width, together with large-scale streaky structures found in areas between the turbulent regions. An image analysing technique was used to determine the intermittency factor, i.e. the turbulence fraction in the flow, as function of Reynolds number. It is found that the skin friction coefficient reaches its turbulent value before the flow is fully turbulent (the intermittency factor is still below one). This suggests that the observed streaky structures in non-turbulent regions contribute to the enhancement of the wall-normal transfer of momentum. Also above the Reynolds numbers where the turbulent skin friction coefficient has been established large-scale features consisting of irregular streaky structures are found. They have an oblique shape similar to the non-turbulent and turbulent patches in the transitional flow indicating that the transition process is not fully complete even above the Reynolds number where the skin friction reaches its turbulent level. Graphic abstract


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino ◽  
F. Bertini

Abstract The boundary layer developing over the suction side of a low-pressure turbine cascade operating under unsteady inflow conditions has been experimentally investigated. Time-resolved particle image velocimetry (PIV) measurements have been performed in two orthogonal planes, the blade-to-blade and a wall-parallel plane embedded within the boundary layer, for two different wake-reduced frequencies. Proper orthogonal decomposition (POD) has been used to analyze the data and to provide an interpretation of the most significant flow structures for each phase of the wake passing cycle. Detailed information on the most energetic turbulent structures at a particular phase is obtained with a newly developed procedure that overcomes the limit of classical phase average. The synchronization of the measurements in the two planes allows the computation of the characteristic dimension of boundary layer streaky structures that are responsible for transition. The largest and most energetic structures are observed when the wake centerline passes over the rear part of the suction side, and they appear practically the same for both reduced frequencies. The passing wake forces transition leading to the breakdown of the boundary layer streaks. Otherwise, the largest differences between the low and high reduced frequency are observed in the calmed region. The postprocessing of these two planes allowed computing the spacing of the streaky structures and making it nondimensional by the boundary layer displacement thickness observed for each phase. The nondimensional value of the streaks spacing is about constant, irrespective of the reduced frequency.


2019 ◽  
Vol 883 ◽  
Author(s):  
Kenzo Sasaki ◽  
Pierluigi Morra ◽  
André V. G. Cavalieri ◽  
Ardeshir Hanifi ◽  
Dan S. Henningson


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2005 ◽  
Author(s):  
Wang ◽  
Peng ◽  
Chen ◽  
Fan

Low- and high-speed streaks (ejection, Q2, and sweep, Q4, events in quadrant analysis) are significant features of coherent structures in turbulent flow. Streak formation is closely related to turbulent structures in several vortex models, such as attached eddy models, streamwise vortex analysis models, and hairpin vortex models, which are all standard models. Vortex models are complex, whereby the relationships among the different vortex models are unclear; thus, further studies are still needed to complete our understanding of vortices. In this study, 30 sets of direct numerical simulation (DNS) data were obtained to analyze the mechanics of the formation of coherent structures. Image processing techniques and statistical analysis were used to identify and quantify streak characteristics. We used a method of vortex recognition to extract spanwise vortices in the x–z plane. Analysis of the interactions among coherent structures showed that the three standard vortex models all gave reasonably close results. The attached eddy vortex model provides a good explanation of the linear dimensions of streaky structures with respect to the water depth and Q2 and Q4 events, whereby it can be augmented to form the quasi-streamwise vortex model. The legs of a hairpin vortex envelop low-speed streaky structures and so move in the streamwise direction; lower-velocity vortex legs also gradually accumulate into a streamwise vortex. Statistical analysis allowed us to combine our present results with some previous research results to propose a mechanism for the formation of streaky structures. This study provides a deeper understanding of the interrelationships among different vortex models.


2019 ◽  
Vol 873 ◽  
pp. 211-237 ◽  
Author(s):  
Petrônio A. S. Nogueira ◽  
André V. G. Cavalieri ◽  
Peter Jordan ◽  
Vincent Jaunet

Streaks have been found to be an important part of wall-turbulence dynamics. In this paper, we extend the analysis for unbounded shear flows, in particular a Mach 0.4 round jet, using measurements taken using dual-plane, time-resolved, stereoscopic particle image velocimetry (PIV) taken at pairs of jet cross-sections, allowing the evaluation of the cross-spectral density of streamwise velocity fluctuations resolved into azimuthal Fourier modes. From the streamwise velocity results, two analyses are performed: the evaluation of wavenumber spectra (assuming Taylor’s hypothesis for the streamwise coordinate) and a spectral proper orthogonal decomposition (SPOD) of the velocity field using PIV planes in several axial stations. The methods complement each other, leading to the conclusion that large-scale streaky structures are also present in turbulent jets where they experience large growth in the streamwise direction, energetic structures extending up to eight diameters from the nozzle exit. Leading SPOD modes highlight the large-scale, streaky shape of the structures, whose aspect ratio (streamwise over azimuthal length) is approximately 15. The data were further analysed using SPOD, resolvent and transient growth analyses, good agreement being observed between the models and the leading SPOD mode for the wavenumbers considered. The models also indicate that the lift-up mechanism is active in turbulent jets, with streamwise vortices leading to streaks. The results show that large-scale streaks are a relevant part of the jet dynamics.


2018 ◽  
Vol 861 ◽  
pp. 556-584 ◽  
Author(s):  
Johan Sundin ◽  
Shervin Bagheri

Surfaces with filamentous structures are ubiquitous in nature on many different scales, ranging from forests to micrometre-sized cilia in organs. Hairy surfaces are elastic and porous, and it is not fully understood how they modify turbulence near a wall. The interaction between hairy surfaces and turbulent flows is here investigated numerically in a turbulent channel flow configuration at friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}\approx 180$. We show that a filamentous bed of a given geometry can modify a turbulent flow very differently depending on the resonance frequency of the surface, which is determined by the elasticity and mass of the filaments. Filaments having resonance frequencies lower than the main frequency content of the turbulent wall-shear stress conform to slowly travelling elongated streaky structures, since they are too slow to adapt to fluid forces of higher frequencies. On the other hand, a bed consisting of stiff and low-mass filaments has a high resonance frequency and shows local regions of increased permeability, which results in large entrainment and a vast increase in drag.


Sign in / Sign up

Export Citation Format

Share Document