scholarly journals Local stress fields in solids estimated by acoustical emission method

2021 ◽  
Vol 2103 (1) ◽  
pp. 012064
Author(s):  
V L Hilarov ◽  
E E Damaskinskaya

Abstract Based on the Zhurkov’s kinetic concept of solids’ fracture a local internal stress estimation method is introduced. Stress field is computed from the time series of acoustic emission intervals between successive signals. For the case of two structurally different materials the time evolution of these stresses is examined. It is shown that temporal changes of these stresses’ accumulation law may serve as a precursor of incoming macroscopic fracture.

2021 ◽  
Vol 63 (4) ◽  
pp. 515
Author(s):  
В.Л. Гиляров ◽  
Е.Е. Дамаскинская

Local internal stress estimation method based on the S.N. Zhurkov kinetic concept of solids fracture is introduced. The stress field is computed from the time series of acoustic emission intervals between the successive signals. For the case of two structurally quite different materials the time evolution of this stress is examined.


2021 ◽  
Vol 63 (6) ◽  
pp. 783
Author(s):  
В.Л. Гиляров ◽  
Е.Е. Дамаскинская

Local internal stress fields were computed from the time series of acoustic emission intervals between the successive signals for the case of structurally different heterogeneous materials. It is shown that a change in the nature of these stresses accumulation can serve as a prognostic sign of impending failure.


2021 ◽  
Author(s):  
Carolin Boese ◽  
Joerg Renner ◽  
Georg Dresen ◽  

<p>In 2018-2019, the STIMTEC hydraulic stimulation experiment was conducted at the Reiche Zeche underground laboratory in Freiberg, Saxony/Germany, to investigate the role of hydro-mechanical processes for the often required enhancement of hydraulic properties in deep geothermal projects. We applied the same injection protocol to each of the ten stimulated intervals in the 63 m-long injection borehole. Yet, we observed significant small-scale variability in the seismic and hydraulic responses to stimulation and in parallel stress field heterogeneity on the meter scale. While acoustic emission (AE) activity was high in the upper part of the injection borehole, no AE events were detected in its deepest part, ending in a high-permeability damage zone.</p><p>To investigate the stress field and seismic variability throughout the experimental volume and their interrelation further, we started the follow-on experiment STIMTEC-X. The initial phase involved eleven local stress measurements performed in October 2020 in three existing boreholes, previously used for monitoring purposes, with varying orientations and lengths. This phase of the experiment was seismically monitored in real-time using an adaptive, high-resolution seismic monitoring network comprising six AE-type hydrophones, six regular AE sensors and four accelerometers. The hydrophones were installed in combination with hydraulic gauges or the double packer probe used for localized injection to make best use of the existing infrastructure. Hydrophones were optimally placed for each measurement configuration anew with at least one deployed in the direct vicinity (~3-4 m) of the injection interval. We detected low-magnitude AE activity (M<-3.5) at high resolution, spatially distributed between distinct clusters identified previously during the STIMTEC experiment. Overall, these records indicate a doubling of the seismically active volume. We also performed eight dilatometer tests to determine deformation characteristics of induced hydrofracs and pre-existing fractures. A circulation experiment between the injection borehole and two newly drilled boreholes of 23 m and 30 m depth is pending. Here, we present the seismicity associated with the STIMTEC and STIMTEC-X hydraulic stimulation campaigns and focal mechanism solutions. We focus on how they contribute to 3-D volumetric stress field characterisation between local stress measurement points.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.5069b42fb60064884501161/sdaolpUECMynit/12UGE&app=m&a=0&c=928e8094105ded0e25c2a2da4e49946e&ct=x&pn=gnp.elif&d=1" alt=""></p><p>Figure 1: Borehole layout (cyan - injection borehole, yellow: seismic monitoring boreholes, green: hydraulic monitoring borehole, red: mine-back validation boreholes) and acoustic emission (AE) events during the STIMTEC (yellow and orange circles) and STIMTEC-X (purple circle) experiments at the Reiche Zeche underground laboratory in Freiberg, Germany. Damage zones (transparent red) and hydraulically stimulated (dark blue rings) and/or hydraulically tested intervals (light blue rings) are shown. Stimulation of the intervals resulted in >11000 AE events with most events occurring during the periodic pumping sequences following the hydrofracturing. The seismic clouds extend about 5 m radially around the boreholes.</p>


Author(s):  
A.K. Pevnev

The article reasonably shows that the uppermost layer of the Earth's crust up to 25 kilometers is seismogenic. Aim. The article provides the evidence that crustal seismicity is generated not by regional stress fields of a homogeneous shear, as it was adopted in the strategy for solving the problem of earthquake forecast, but by local fields of exponential elastic stress. Such fields arise in one or another section of a seismogenic fault due to the occurrence of a stress concentrator in this section. According to the Saint Venant principle, such a stress concentrator (an additional load in the system) generates a local stress field of an exponential form. In this field the maximum stress is localized in the areas of an increment load application (in the fault) and decreases very quickly (exponentially) on both sides of the fault. Such stress concentrators arise in those areas of a seismogenic fault, where displacements along the fault stop due to various reasons. G.A. Gamburtsev foresaw this situation and very precisely called such concentrators as “seams”. The origin of a local stress field at the place, where a seam appears, is caused by the following fact: the power impulse generated by the seam is small compared to the linear momentum of the entire system of blocks of the considered fault and, therefore, it will stop the displacement of blocks only within the seam; but the displacements of blocks outside the seam will continue in the same mode. One can single out the following reasons causing stress concentrators in the fault: variations in different stress fields, changing the value of the friction coefficient in the fault; variations in fluid processes; the influence of temperature and pressure; mechanical “hooks” of blocks due to irregularities of their contacting surfaces, etc. Methods. The fact of the existence of the considered local stress fields is confirmed by geodetic studies, i.e. the results of repeated geodetic measurements in the epicentral zones of strong earthquakes. Results.These results allow drawing the following conclusions: 1) the sign of the preparation of a crustal earthquake source was reliably determined. This sign means the increasing deformation of the elastic bending of rocks in the source in the course of time; 2) from the standpoint of solving the problem of earthquake forecast, the main and decisive result of these studies is that the deformation processes occurring in the impending source also capture the Earth's surface, because this is precisely what opens up great opportunities in solving this problem; 3) with the help of special geodetic systems (forecast profiles), one can detect the places of the impending earthquake source preparation, i.e. make an accurate forecast of the site of a future earthquake; 4) since the energy of the earthquake source is functionally related to its size, one can realize the correct prediction of the maximum possible intensity of the future earthquake by determining the length of the seismogenic fault section, elastically deformed by the preparation of the earthquake using the forecast profiles В статье обоснованно показано, что сейсмогенным является самый верхний слой земной коры мощностью до 25 километров. Цель работы. В статье приведены доказательства того, что коровая сейсмичность порождается вовсе не региональными полями напряжений однородного сдвига, как это было принято в стратегии решения проблемы прогноза землетрясений, а локальными полями упругих напряжений экспоненциального вида. Такие поля возникают в том или ином участке сейсмогенного разлома из-за появления на этом участке концентратора напряжений. Согласно принципу Сен-Венана такой концентратор напряжений (дополнительная нагрузка в системе) порождает локальное поле напряжений экспоненциального вида. Максимальная величина напряжения в этом поле расположена в месте приложения дополнительной нагрузки (в разломе) и очень быстро (экспоненциально) убывает в обе стороны от разлома. Такие концентраторы напряжений возникают на тех участках сейсмогенного разлома, на которых в силу тех или иных причин прекращаются смещения по разлому. Г.А. Гамбурцев провидчески предвидел данную ситуацию и очень метко такие концентраторы назвал «спайками»». Возникновение локального поля напряжений в месте появления спайки обусловлено тем, что импульс силы, порождаемый спайкой мал по сравнению с количеством движения всей системы блоков рассматриваемого разлома и, следовательно, он остановит смещение блоков лишь в пределах спайки, но смещения блоков вне спайки будут продолжаться в прежнем режиме. Среди причин, порождающих концентраторы напряжений в разломе можно назвать следующие: вариации различных полей напряжений, изменяющие величину коэффициента трения в разломе; влияние температуры и давления; вариации флюидных процессов; механические «зацепы» блоков из-за неровностей их соприкасающихся поверхностей и др. Методы исследования. Факт существования рассматриваемых локальных полей напряжений подтвержден геодезическими исследованиями – результатами повторных геодезических измерений в эпицентральных зонах сильных землетрясений. Результаты работы. Эти результаты позволяют сделать следующие выводы: 1) достоверно определен признак подготовки очага корового землетрясения, которым является нарастающая во времени деформация упругого изгиба горных пород в его очаге; 2) с позиций решения проблемы прогноза землетрясений главным и определяющим результатом этих исследований является то, что происходящие в готовящемся очаге деформационные процессы захватывают и земную поверхность, ибо именно это открывает большие возможности в решении этой проблемы; 3) с помощью специальных геодезических систем (прогнозных профилей) можно обнаруживать места подготовки очагов готовящихся землетрясений, т.е. осуществлять точный прогноз места будущего землетрясения; 4) так как энергия очага землетрясения функционально связана с его размерами, то определив с помощью прогнозных профилей длину участка сейсмогенного разлома, упруго деформированного подготовкой землетрясения, можно осуществить и точный прогноз максимально возможной силы будущего землетрясения


2020 ◽  
Vol 853 ◽  
pp. 157-161
Author(s):  
Akematsu Yoshiaki ◽  
Tani Takayuki ◽  
Gotoh Hiromitsu

We investigated the effects of the stress field on acoustic emission (AE) during delayed fracture of glass. Delay fracture occurrence was controlled by the Vickers indentation load and kind of glass. Delayed fractures of glass were monitored by an AE method. After the Vickers hardness test, the glass surface was observed and its condition was compared with the AE signals. Characteristic AE signals were identified, and it was shown that the AE method is effective in measurements on the delayed fracture of glass.


Sign in / Sign up

Export Citation Format

Share Document