scholarly journals A New Method for Auto-Inspecting Both Opposite Surfaces of Tec Components Based on Equal-Optical-Path Imaging System

2021 ◽  
Vol 2112 (1) ◽  
pp. 012018
Author(s):  
Tingdi Liao ◽  
Qilu Huang ◽  
Shaobin Yan ◽  
Wenzhi Chen ◽  
Yafan Duan ◽  
...  

Abstract An new optical method for simultaneously inspecting opposite surfaces defects of thermoelectric cooler (TEC) components that meets condition of equal optical paths for both surfaces imaging has been proposed. The optical apparatus for surfaces defects inspection has been designed and established with “confocal” imaging system consisting of two trapzoid reflection prisms and one optical images combiner. Experimental investigations on defects inspection with the “confocal” imaging system have been carried out. The results showed that the proposed optical method can be used to simultaneously inspect the defects of opposite surfaces of TEC components without need to employ a tele-centric imaging lens with large depth of focus. It was concluded that the optical inspection method can meet the technical requirements for inspecting opposite surfaces (both side surfaces, or both top and bottom surfaces) defects of TEC components and has advantages of equal good imaging quality, increased inspection accuracy and throughput, simplified system configuration and improved system reliability etc.

2002 ◽  
Author(s):  
Anand K. Asundi ◽  
Chongxiang Li ◽  
Yanfeng Zhang ◽  
Zhong P. Fang

2021 ◽  
Author(s):  
Sven Gastauer ◽  
Jeffrey S. Ellen ◽  
Mark D. Ohman

<p><em>Zooglider</em> is an autonomous buoyancy-driven ocean glider designed and built by the Instrument Development Group at Scripps. <em>Zooglider</em> includes a low power camera with a telecentric lens for shadowgraph imaging and two custom active acoustics echosounders (operated at 200/1000 kHz).  A passive acoustic hydrophone records vocalizations from marine mammals, fishes, and ambient noise.  The imaging system (<em>Zoocam</em>) quantifies zooplankton and ‘marine snow’ as they flow through a sampling tunnel within a well-defined sampling volume. Other sensors include a pumped Conductivity-Temperature-Depth probe and Chl-<em>a</em> fluorometer.  An acoustic altimeter permits autonomous navigation across regions of abrupt seafloor topography, including submarine canyons and seamounts.  Vertical sampling resolution is typically 5 cm, maximum operating depth is ~500 m, and mission duration up to 50 days.  Adaptive sampling is enabled by telemetry of measurements at each surfacing.  Our post-deployment processing methodology classifies the optical images using advanced Deep Learning methods that utilize context metadata.  <em>Zooglider</em> permits in situ measurements of mesozooplankton and marine snow - and their natural, three dimensional orientation - in relation to other biotic and physical properties of the ocean water column.  <em>Zooglider</em> resolves micro-scale patches, which are important for predator-prey interactions and biogeochemical cycling. </p><p> </p>


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Valentina Sarao ◽  
Daniele Veritti ◽  
Enrico Borrelli ◽  
Srini Vas R. Sadda ◽  
Enea Poletti ◽  
...  

Abstract Background Conventional flash fundus cameras capture color images that are oversaturated in the red channel and washed out in the green and blue channels, resulting in a retinal picture that often looks flat and reddish. A white LED confocal device was recently introduced to provide a high-quality retinal image with enhanced color fidelity. In this study, we aimed to evaluate the color rendering properties of the white LED confocal system and compare them to those of a conventional flash fundus camera through chromaticity analysis. Methods A white LED confocal device (Eidon, Centervue, Padova, Italy) and a traditional flash fundus camera (TRC-NW8, Topcon Corporation, Tokyo, Japan) were used to capture fundus images. Color images were evaluated with respect to chromaticity. Analysis was performed according to the image color signature. The color signature of an image was defined as the distribution of its pixels in the rgb chromaticity space. The descriptors used for the analysis are the average and variability of the barycenter positions, the average of the variability and the number of unique colors (NUC) of all signatures. Results Two hundred thirty-three color photographs were acquired with each retinal camera. The images acquired by the confocal white LED device demonstrated an average barycenter position (rgb = [0.448, 0.328, 0.224]) closer to the center of the chromaticity space, while the conventional fundus camera provides images with a clear shift toward red at the expense of the blue and green channels (rgb = [0.574, 0.278, 0.148] (p < 0.001). The variability of the barycenter positions was higher in the white LED confocal system than in the conventional fundus camera. The average variability of the distributions was higher (0.003 ± 0.007, p < 0.001) in the Eidon images compared to the Topcon camera, indicating a greater richness of color. The NUC percentage was higher for the white LED confocal device than for the conventional flash fundus camera (0.071% versus 0.025%, p < 0.001). Conclusions Eidon provides more-balanced color images, with a wider richness of color content, compared to a conventional flash fundus camera. The overall higher chromaticity of Eidon may provide benefits in terms of discriminative power and diagnostic accuracy.


2020 ◽  
Vol 57 (9) ◽  
pp. 1043-1047
Author(s):  
Enrico Borrelli ◽  
Lea Querques ◽  
Rosangela Lattanzio ◽  
Michele Cavalleri ◽  
Alessio Grazioli Moretti ◽  
...  

2010 ◽  
Author(s):  
A. Toya ◽  
N. Sasaki ◽  
S. Kubota ◽  
T. Kikkawa

2008 ◽  
Vol 294 (1) ◽  
pp. H121-H133 ◽  
Author(s):  
Toshiharu Oba ◽  
Yoshitaka Maeno ◽  
Masataka Nagao ◽  
Nagahiko Sakuma ◽  
Takashi Murayama

Recent studies indicate that low concentrations of acetaldehyde may function as the primary factor in alcoholic cardiomyopathy by disrupting Ca2+ handling or disturbing cardiac excitation-contraction coupling. By producing reactive oxygen species, acetaldehyde shifts the intracellular redox potential from a reduced state to an oxidized state. We examined whether the redox state modulates acetaldehyde-induced Ca2+ handling by measuring Ca2+ transient using a confocal imaging system and single ryanodine receptor type 2 (RyR2) channel activity using the planar lipid bilayer method. Ca2+ transient was recorded in isolated rat ventricular myocytes with incorporated fluo 3. Intracellular reduced glutathione level was estimated using the monochlorobimane fluorometric method. Acetaldehyde at 1 and 10 μM increased Ca2+ transient amplitude and its relative area in intact myocytes, but acetaldehyde at 100 μM decreased Ca2+ transient area significantly. Acetaldehyde showed a minor effect on Ca2+ transient in myocytes in which intracellular reduced glutathione content had been decreased against challenge of diethylmaleate to a level comparable to that induced by exposure to ∼50 μM acetaldehyde. Channel activity of the RyR2 with slightly reduced cytoplasmic redox potential from near resting state (−213 mV) or without redox fixation was augmented by all concentrations of acetaldehyde (1–100 μM) used here. However, acetaldehyde failed to activate the RyR2 channel, when the cytoplasmic redox potential was kept with a reduced (−230 mV) or markedly oxidized (−180 mV) state. This result was similar to effects of acetaldehyde on Ca2+ transient in diethylmaleate-treated myocytes, probably being in oxidized redox potential. The present results suggest that acetaldehyde acts as an RyR2 activator to disturb cardiac muscle function, and redox potential protects the heart from acetaldehyde-induced alterations in myocytes.


Sign in / Sign up

Export Citation Format

Share Document