scholarly journals Root locus approach in design of PID controller for cruise control application

2021 ◽  
Vol 2115 (1) ◽  
pp. 012023
Author(s):  
M Manju Prasad ◽  
M A Inayathullah

Abstract The Proportional Integral Derivative (PID) controller is an effective and common feedback control design used in closed loop control systems. One such best consideration of closed loop control system would be cruise control system. This is a system that automatically controls the speed of an electric vehicle despite external disturbances. In this paper, the goal is to design a PID controller using root locus technique for a closed loop cruise control system. By root locus approach, the controller constants and controller design is finalized. Simulation results through MATLAB environment validate the effectiveness of controller design.

2012 ◽  
Vol 241-244 ◽  
pp. 1164-1167
Author(s):  
Ming Biao Yu ◽  
De An Zhao ◽  
Jun Zhang

Considering that the threshing cylinder palstance system has characteristics of nonlinear, time-delay, what’s more the control environment is very complex and multi-disturbance; this paper presented the method of nonlinear PID to control the cylinder palstance. Firstly, The paper analyzes characteristics of the model of the threshing cylinder palstance system .Then the nonlinear PID controller is designed, and with the threshing cylinder palstance system constitute a closed-loop control system. Finally, simulation results show the effectiveness and feasibility of the proposed method.


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


Author(s):  
Bahram Yaghooti ◽  
Ali Siahi Shadbad ◽  
Kaveh Safavi ◽  
Hassan Salarieh

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document