scholarly journals The effect of Reynolds number on near-wall reverse flow in a turbulent duct flow

2021 ◽  
Vol 2119 (1) ◽  
pp. 012032
Author(s):  
V A Ivashchenko ◽  
D I Zaripov ◽  
R I Mullyadzhanov

Abstract The influence of the Reynolds number on the statistics of a near-wall reverse flow phenomenon, taking place in a turbulent duct flow, is studied. An increase in the NWRF probability is found in both the core and corner regions of the duct walls for higher Reynolds number. The mechanism of the NWRF formation, described recently by Zaripov et al. [1, 2], is validated for higher Reynolds number flows.

2021 ◽  
Vol 923 ◽  
Author(s):  
Dinar Zaripov ◽  
Vladislav Ivashchenko ◽  
Rustam Mullyadzhanov ◽  
Renfu Li ◽  
Nikolay Mikheev ◽  
...  

Abstract


2021 ◽  
Vol 33 (8) ◽  
pp. 085130
Author(s):  
Dinar Zaripov ◽  
Vladislav Ivashchenko ◽  
Rustam Mullyadzhanov ◽  
Renfu Li ◽  
Dmitriy Markovich ◽  
...  

Author(s):  
Haixuan Ye ◽  
Yang Chen ◽  
Kevin Maki

For numerical simulations of ship hydrodynamics in high Reynolds number, near-wall grids with high quality are essential to accurately predict the flow field and shear stress. This article proposes a discrete-forcing immersed boundary method to simulate moving solid boundaries in turbulent flows. The technique will efficiently remove the requirement of high-quality body-conforming grids and also preserve the grid quality throughout the simulation when body motions are considered. The one-equation Spalart–Allmaras turbulence model is coupled with the immersed boundary method for turbulence closure. A key aspect of this method is to use a wall function to alleviate the near-wall cell-size requirement in high-Reynolds-number flows. In this method, the boundary conditions on the immersed surfaces are enforced without the need of spreading functions, which is favorable for high-Reynolds-number flows. The performance of the method is carefully verified and validated through various problems, including both laminar and turbulent flows for fixed and moving solid surfaces. Subsequently, this method is further examined by predicting the turbulent flows around a model-scaled double-body KVLCC2 tanker. The total resistance and the local wake field are compared with experimental data.


2018 ◽  
Vol 851 ◽  
pp. 148-186 ◽  
Author(s):  
Walter Fornari ◽  
Hamid Tabaei Kazerooni ◽  
Jeanette Hussong ◽  
Luca Brandt

We study the turbulent square duct flow of dense suspensions of neutrally buoyant spherical particles. Direct numerical simulations (DNS) are performed in the range of volume fractions $\unicode[STIX]{x1D719}=0{-}0.2$, using the immersed boundary method (IBM) to account for the dispersed phase. Based on the hydraulic diameter a Reynolds number of 5600 is considered. We observe that for $\unicode[STIX]{x1D719}=0.05$ and 0.1, particles preferentially accumulate on the corner bisectors, close to the corners, as also observed for laminar square duct flows of the same duct-to-particle size ratio. At the highest volume fraction, particles preferentially accumulate in the core region. For plane channel flows, in the absence of lateral confinement, particles are found instead to be uniformly distributed across the channel. The intensity of the cross-stream secondary flows increases (with respect to the unladen case) with the volume fraction up to $\unicode[STIX]{x1D719}=0.1$, as a consequence of the high concentration of particles along the corner bisector. For $\unicode[STIX]{x1D719}=0.2$ the turbulence activity is reduced and the intensity of the secondary flows reduces to below that of the unladen case. The friction Reynolds number increases with $\unicode[STIX]{x1D719}$ in dilute conditions, as observed for channel flows. However, for $\unicode[STIX]{x1D719}=0.2$ the mean friction Reynolds number is similar to that for $\unicode[STIX]{x1D719}=0.1$. By performing the turbulent kinetic energy budget, we see that the turbulence production is enhanced up to $\unicode[STIX]{x1D719}=0.1$, while for $\unicode[STIX]{x1D719}=0.2$ the production decreases below the values for $\unicode[STIX]{x1D719}=0.05$. On the other hand, the dissipation and the transport monotonically increase with $\unicode[STIX]{x1D719}$. The interphase interaction term also contributes positively to the turbulent kinetic energy budget and increases monotonically with $\unicode[STIX]{x1D719}$, in a similar way as the mean transport. Finally, we show that particles move on average faster than the fluid. However, there are regions close to the walls and at the corners where they lag behind it. In particular, for $\unicode[STIX]{x1D719}=0.05,0.1$, the slip velocity distribution at the corner bisectors seems correlated to the locations of maximum concentration: the concentration is higher where the slip velocity vanishes. The wall-normal hydrodynamic and collision forces acting on the particles push them away from the corners. The combination of these forces vanishes around the locations of maximum concentration. The total mean forces are generally low along the corner bisectors and at the core, also explaining the concentration distribution for $\unicode[STIX]{x1D719}=0.2$.


AIAA Journal ◽  
1985 ◽  
Vol 23 (9) ◽  
pp. 1308-1319 ◽  
Author(s):  
Virendra C. Patel ◽  
Wolfgang Rodi ◽  
Georg Scheuerer

1991 ◽  
Vol 233 ◽  
pp. 369-388 ◽  
Author(s):  
R. A. Antonia ◽  
J. Kim ◽  
L. W. B. Browne

The fine-scale structure of turbulence in a fully developed turbulent duct flow is examined by considering the three-dimensional velocity derivative field obtained from direct numerical simulations at two relatively small Reynolds numbers. The magnitudes of all mean-square derivatives (normalized by wall variables) increase with the Reynolds number, the increase being largest at the wall. These magnitudes are not consistent with the assumption of local isotropy except perhaps near the duct centre-line. When the assumption of local isotropy is relaxed to one of local axisymmetry, or invariance with respect to rotation about a coordinate axis (here chosen in the streamwise direction), satisfactory agreement is indicated by the data outside the wall region. Support for axisymmetry is demonstrated by anisotropy invariant maps of the dissipation and vorticity tensors. The departure from axisymmetry does not appear to be affected by the Reynolds number. Expressions are proposed for approximations to the average energy dissipation and components of the mean-square vorticity. These proposals should allow these quantities to be measured accurately, at least in the present flow.


1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

Sign in / Sign up

Export Citation Format

Share Document