scholarly journals Numerical study of thermal stress of a silicon mirror forming a beam of synchrotron radiation

2021 ◽  
Vol 2119 (1) ◽  
pp. 012148
Author(s):  
K.A. Finnikov ◽  
V.V. Vinokurov ◽  
A.D. Nikolenko ◽  
Y.V. Zubavichus ◽  
O.A. Kabov

Abstract Numerical simulation of heat transfer in a mirror for focusing a synchrotron radiation beam and its thermally stressed state has been carried out. The choice of the method for cooling the mirror through contact with the water-cooled plates, which provides the specified limitations on thermal deformation, has been substantiated. The modes of heat transfer, implemented under different conditions of heat transfer at the boundary of the mirror with water-cooled plates, are compared.

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


1999 ◽  
Author(s):  
Sultan B. Dabagov ◽  
Igor I. Vlasov ◽  
Violetta A. Murashova ◽  
Mikhail V. Negodaev ◽  
Victor G. Ralchenko ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (16) ◽  
pp. 7246-7251 ◽  
Author(s):  
N. Fukata ◽  
W. Jevasuwan ◽  
Y. Ikemoto ◽  
T. Moriwaki

The first report of B local vibrational peaks and electronic transitions of a bound hole from the ground state of a B acceptor atom to excited states by means of micro-FT-IR measurements using an IR-SR beam.


1998 ◽  
Vol 5 (3) ◽  
pp. 621-623 ◽  
Author(s):  
J.-R. Chen ◽  
T. S. Ueng ◽  
G. Y. Hsiung ◽  
T. F. Lin ◽  
C. T. Lee ◽  
...  

A prototype photon-beam-position monitor has been designed, fabricated and tested at the Taiwan Light Source of the Synchrotron Radiation Research Center. Aluminium was chosen as the material of the blade electrodes due to its low atomic number and high thermal conductivity. The resolution of this photon-beam-position monitor was <±1 µm. The sensitivity of the blade electrode has been measured in situ. Results of measurements for bending-magnet light and undulator light with different gaps are described.


1998 ◽  
Vol 5 (3) ◽  
pp. 759-761 ◽  
Author(s):  
Tatsuya Zama ◽  
Terubumi Saito ◽  
Hideo Onuki

A beamline which serves for calibrating transfer standard light sources (deuterium lamps, excimer lamps, Xe lamps etc.) in the UV and VUV regions is being constructed. The synchrotron radiation from the electron storage ring TERAS (750 MeV) is used as a primary standard of spectral radiant intensity. In order to use synchrotron radiation as a primary standard, the electron beam and synchrotron radiation beam parameters need to be evaluated. Uncertainties of synchrotron radiation flux evaluated by measurements of the magnetic flux density, the position of the electron orbital plane, the electron beam size and the distance from the synchrotron radiation tangent point to the detector system are expected to be about 0.003, 0.01, 0.05 and 0.1%, respectively.


Sign in / Sign up

Export Citation Format

Share Document