beam monitoring
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
XianRong Huang ◽  
Xianbo Shi ◽  
Lahsen Assoufid

Rigorous dynamical theory calculations show that four-beam diffraction (4BD) can be activated only by a unique photon energy and a unique incidence direction. Thus, 4BD may be used to precisely calibrate X-ray photon energies and beam positions. Based on the principles that the forbidden-reflection 4BD pattern, which is typically an X-shaped cross, can be generated by instant imaging using the divergent beam from a point source without rocking the crystal, a detailed real-time high-resolution beam (and source) position monitoring scheme is illustrated for monitoring two-dimensional beam positions and directions of modern synchrotron light sources, X-ray free-electron lasers and nano-focused X-ray sources.


2022 ◽  
Vol 17 (01) ◽  
pp. C01021
Author(s):  
B. Cao ◽  
Y. Wang ◽  
Y. Wen ◽  
Y. Tian ◽  
J. Liao ◽  
...  

Abstract This paper describes a 2 Msps 9-bit column-parallel ADC for monolithic active pixel sensor. It is designed in fully differential cyclic architecture and takes eight clock cycles to perform a 9-bit conversion. This ADC is fabricated in a 130 nm CMOS process. Each ADC covers a small area of 100 µm × 300 µm and consumes ∼5 mW. The measurement results show that this ADC has a signal-to-noise and distortion ratio (SNDR) of 46.8 dB. The DNL (Differential Nonlinearity) and (Integral Nonlinearity) INL are 0.168 LSB and 0.112 LSB, respectively. The effective number of bits (ENOB) is 7.48 bits.


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Jeremy Davis ◽  
Andrew Dipuglia ◽  
Matthew Cameron ◽  
Jason Paino ◽  
Ashley Cullen ◽  
...  

Successful transition of synchrotron-based microbeam radiation therapy (MRT) from pre-clinical animal studies to human trials is dependent upon ensuring that there are sufficient and adequate measures in place for quality assurance purposes. Transmission detectors provide researchers and clinicians with a real-time quality assurance and beam-monitoring instrument to ensure safe and accurate dose delivery. In this work, the effect of transmission detectors of different thicknesses (10 and 375 µm) upon the photon energy spectra and dose deposition of spatially fractionated synchrotron radiation is quantified experimentally and by means of a dedicated Geant4 simulation study. The simulation and experimental results confirm that the presence of the 375 µm thick transmission detector results in an approximately 1–6% decrease in broad-beam and microbeam peak dose. The capability to account for the reduction in dose and change to the peak-to-valley dose ratio justifies the use of transmission detectors as thick as 375 µm in MRT provided that treatment planning systems are able to account for their presence. The simulation and experimental results confirm that the presence of the 10 µm thick transmission detector shows a negligible impact (<0.5%) on the photon energy spectra, dose delivery and microbeam structure for both broad-beam and microbeam cases. Whilst the use of 375 µm thick detectors would certainly be appropriate, based upon the idea of best practice the authors recommend that 10 µm thick transmission detectors of this sort be utilized as a real-time quality assurance and beam-monitoring tool during MRT.


Radiation ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-32
Author(s):  
Jeoffray Vidalot ◽  
Adriana Morana ◽  
Hicham El Hamzaoui ◽  
Aziz Boukenter ◽  
Geraud Bouwmans ◽  
...  

We investigated in this work the radioluminescence properties of a Ce-doped multimode silica-based optical fiber (core diameter of 50 µm) manufactured by the sol–gel technique when exposed to the high-energy X-rays (~600 keV) of the ORIATRON facility of CEA. We demonstrated its potential to monitor in real-time the beam characteristics of this facility that can either operate in a pulsed regime (pulse duration of 4.8 µs, maximum repetition rate of 250 Hz) or in a quasi-continuous mode. The radiation-induced emission (radioluminescence and a minor Cerenkov contribution) linearly grew with the dose rate in the 15–130 mGy(SiO2)/s range, and the afterglow measured after each pulse was sufficiently limited to allow a clear measurement of pulse trains. A sensor with ~11 cm of sensitive Ce-doped fiber spliced to rad-hard fluorine-doped optical fiber, for the emitted light transport to the photomultiplier tube, exhibited interesting beam monitoring performance, even if the Cerenkov emission in the transport fiber was also considered (~5% of the signal). The beam monitoring potential of this class of optical fiber was demonstrated for such facilities and the possibilities of extending the dose rate range are discussed based on possible architecture choices such as fiber type, length or size.


2021 ◽  
Author(s):  
Diana Bachiller-Perea ◽  
Mingming Zhang ◽  
Celeste Fleta ◽  
David Quirion ◽  
Daniela Bassignana ◽  
...  

Abstract Purpose: The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Methodology: Each system consists of arrays of independent microdetectors covering 2 mm×2 mm and 0.4 mm×12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11×11 microdetectors and 3×3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unit-cell of both arrays is a new type of 3D cylindrical diode with a 25 µm diameter and a 20 µm depth that results in a well-defined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 18 MeV at clinical-equivalent fluence rates. Results: The microdosimetry quantities were obtained with a spatial resolution of 200 µm and 600 µm for the 11×11 system and for the 3×3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. Conclusion: We have studied the microdosimetry response under clinical equivalent fluence rate of the first multi-arrays of 3D cylindrical microdetectors covering several centimeters of sensitive area. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Alain Blondel ◽  
Eliana Gianfelice

AbstractThe capability to determine the FCC-ee centre-of-mass energies (ECM) at the ppm level using resonant depolarization of the beams is essential for the Z line shape measurements, the W mass and the possible observation of the Higgs boson s-channel production. A first analysis (Blondel A et al Polarization and centre-of-mass energy calibration at FCC-ee. arXiv:1909.12245) demonstrated the feasibility of this programme, conditional to careful preparation and a number of further developments. The existing simulation codes must be unified; the analysis and design of the instrumentation must be developed; and a detailed planning must be developed for the simultaneous and coordinated operation of the accelerator, of the continuous polarization and depolarization measurements, and of the beam monitoring devices, ensuring a precise extrapolation from beam energies to centre-of-mass energy and energy spread.


Author(s):  
Roxane Oesterle ◽  
Patrik Gonçalves Jorge ◽  
Veljko Grilj ◽  
Jean Bourhis ◽  
Marie‐Catherine Vozenin ◽  
...  

2021 ◽  
Author(s):  
Julie Lascaud ◽  
Rafal Kowalewski ◽  
Benjamin Wollant ◽  
Henri Carmigniani ◽  
Katrin Schnurle ◽  
...  

Author(s):  
Flavien Ralite ◽  
Charbel Koumeir ◽  
Arnaud Guertin ◽  
Férid Haddad ◽  
Quentin Mouchard ◽  
...  
Keyword(s):  
Ion Beam ◽  
X Rays ◽  

Sign in / Sign up

Export Citation Format

Share Document