thermally stressed state
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 15)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012148
Author(s):  
K.A. Finnikov ◽  
V.V. Vinokurov ◽  
A.D. Nikolenko ◽  
Y.V. Zubavichus ◽  
O.A. Kabov

Abstract Numerical simulation of heat transfer in a mirror for focusing a synchrotron radiation beam and its thermally stressed state has been carried out. The choice of the method for cooling the mirror through contact with the water-cooled plates, which provides the specified limitations on thermal deformation, has been substantiated. The modes of heat transfer, implemented under different conditions of heat transfer at the boundary of the mirror with water-cooled plates, are compared.


2021 ◽  
Vol 6 (6 (114)) ◽  
pp. 39-48
Author(s):  
Pavlo Krivenko ◽  
Igor Rudenko ◽  
Oleksandr Konstantynovskyi

Increasing the durability of concrete and reinforced concrete structures according to the criterion of crack resistance is a relevant task of construction materials science. To solve this task, this paper proposes effective solutions for adjusting thermofinite characteristics of alkali-activated slag cement (ASC) by using surfactants of various chemical nature in order to control the thermally-stressed state of concrete based on it (ASC concrete). The method of calorimetry was applied to show that the problematic issue is to adjust the structure formation of ASC by anion-active surface-active substances based on complex polyesters. This is predetermined by the instability of the molecular structure of surfactants in the hydration environment of ASC due to the destruction of complex ester bonds as a result of alkaline hydrolysis. Thermokinetic analysis has demonstrated the effectiveness of using anion-active surfactants, which do not contain ester bonds, as regulators of crack resistance of ASC concrete. Simple polyesters and multi-atom alcohols provide the ability to adjust the duration of the induction period while ensuring the required completeness of ASC hydration within a time frame. The effectiveness of cation-active surface-active substances has been shown, which are characterized by the stability of the molecular structure in the hydration environment of ASC and an increased level of adsorbing capacity. The decrease in the effectiveness of surface-active substances has been shown, in terms of the effect on the heat release of ASC, in the following series: alkaline salt of carboxylic acid>salt of the quaternary ammonium compound>simple polyester> polyalcohol>complex polyester. The reported results are important in view of the possibility of effective adjustment of ASC heat release by influencing the structure formation of surfactant with a certain molecular arrangement in order to predictably reduce crack formation in a thermally-stressed state and a corresponding increase in the durability of structures


Vestnik MGSU ◽  
2021 ◽  
pp. 1483-1492
Author(s):  
Nikolai A. Aniskin ◽  
Nguyen Trong Chuc

Introduction. The contact area of concrete gravity dams is of vital importance. Substantial temperature gradients and tensile stresses can arise in the process of concrete casting and thermal regime creation; they can cause thermal cracking. The practice of monitoring the construction and operation of concrete gravity dams has identified frequent vertical cracking along and across the dam axis, which can have an adverse impact on structural behaviour. Despite the large number of research works, some of which are mentioned in the work, the extent of influence of the modulus of elasticity in the bed on the thermally stressed state of mass concrete has yet to be fully resolved. The purpose of the research is to enhance the insight into the stress-strain state arising in the contact area of mass concrete and the bed, depending on its rigidity. Materials and methods. The research was conducted using the numerical finite element method and the MIDAS software package. Results. The influence of bed rigidity on the thermally stressed state arising in the contact area of mass concrete in the process of construction has been analyzed. Several options featuring different ratios between the modulus elasticity of the bed and mass concrete were considered in respect of a mass concrete structure made of vibrated and rolled concretes. Emerging stresses are compared. Mathematical expressions are obtained to project maximum tensile stresses occurring in the contact area. Conclusions. A more rigid bed rises maximum tensile temperature stresses, which increase the risk of thermal cracking. Research results can be used to predict maximum tensile stresses near the contact section of the mass concrete, whose dimensions are close to those of the structure under research.


2021 ◽  
Vol 20 (3) ◽  
pp. 207-215
Author(s):  
S. N. Kovshar ◽  
P. V. Ryabchikov ◽  
S. V. Gushchin

The paper describes a technique for assessing the thermally stressed state of a concrete massif of a foundation slab made of a self-compacting concrete mixture. The proposed method consists in a preliminary calculation of temperature fields in hardening concrete. The objects of research have been self-compacting concrete mix and structural concrete in the structure mass. The choice of materials for the preparation of a concrete mixture is given and substantiated. The composition of self-compacting concrete has been used to assess the thermally stressed state. A binder with a reduced exotherm has been used in order to reduce the self-heating of concrete. Studies have been carried out to assess the specific heat release of the recommended cement depending on the initial water-cement ratio. The effect of a chemical additive on the rate and magnitude of the specific heat release of cement has been studied.  The paper presents the main theoretical provisions and an algorithm for calculating the thermal stress state of a concrete massif. The finite difference method has been used to calculate the expected temperatures and their distribution in the structure mass, and the temperature stresses in the sections of the concrete mass have been calculated to assess the thermally stressed state. The performed calculations of the temperature fields have made it possible to estimate the maximum possible temperatures and temperature differences over the sections of the concrete massif depending on the initial temperature of the concrete mixture and the average daily temperature of the outside air. Analysis of the temperature distribution has revealed the most dangerous sections of the concrete mass. An assessment of the thermal stress state of the concrete mass has been made on the basis of the results pertaining to calculation of temperature fields. The calculation of temperature stresses in the most dangerous sections of the concrete massif has been performed. It is shown that the calculated value of the temperature stress can serve as a characteristic of the thermally stressed state of the concrete mass. The formation of temperature cracks in a concrete mass is possible when the calculated value of the temperature stress exceeds the actual tensile strength of concrete. Comparison of the calculated and actual values of temperatures in the sections of the foundation slab has made it possible to conclude that the calculations of the temperature fields and, as a consequence, possible temperature deformations are correct.


Author(s):  
Alexander Marchuk ◽  
◽  
Sergii Levkivskiy ◽  
Elena Gavrilenko ◽  
◽  
...  

Modern calculations of layered plates and shells in a three-dimensional formulation are based on a technique where the distribution of the desired functions over the thickness of a structure is sought by the method of discrete orthogonalization. In this article, based on the approaches developed by the authors, the thermally stressed state of layered composite shallow shells with a rigidly fixed lower surface is analyzed. The distribution of the desired functions over the thickness of the structure is found based on the exact analytical solution of the system of differential equations. An approach to studying the thermally stressed state of layered composite shells is also considered, and a spatial model for calculating the thermally stressed state of shallow shells on a rigid basis is constructed. Currently, this is a very urgent task when calculating the pavement of bridges. A feature of this approach is the assignment of the desired functions to the outer surfaces of the layers, which allows one to break the layer into sublayers, reducing the approximation error to almost zero. To build a spatial model, a load option is selected with temperature loads (according to the sine law) and boundary conditions (Navier), which lead to the distribution of the desired functions in terms of a plate with trigonometric harmonics of the Fourier series. A polynomial approximation of the desired functions by thickness is involved. Using the model under consideration, an analysis of flat layered composite shells on a rigid basis under the influence of temperature load was carried out. The considered example showed that the proposed model provides sufficient accuracy in the calculations of layered shallow shells when considering each layer within one sublayer. When dividing each layer into 32, 64, 128 sublayers, almost the same result was obtained. The proposed approach can be used as a reference method for testing applied approaches in calculating the stress states of layered shallow composite shells.


Author(s):  
Alexander Marchuk ◽  
◽  
Sergii Levkivskiy ◽  
Elena Gavrilenko ◽  
◽  
...  

Modern calculations of layered plates and shells in a three-dimensional formulation are based on a technique where the distribution of the desired functions over the thickness of a structure is sought by the method of discrete orthogonalization. In this article, based on the approaches developed by the authors, the thermally stressed state of layered composite shallow shells with a rigidly fixed lower surface is analyzed. The distribution of the desired functions over the thickness of the structure is found based on the exact analytical solution of the system of differential equations. An approach to the study of the thermal stress state of shallow composite shells is considered, and an analytical model is constructed for calculating the thermal stress state of shallow shells on a rigid base with a sliding contact of the layers. Currently, this is a very urgent task when calculating the pavement of bridges. A feature of this approach is the assignment of the desired functions to the outer surfaces of the layers, which allows one to break the layer into sublayers, reducing the approximation error to almost zero. Using the model in question, an analysis of flat layered composite shells on a rigid base with a sliding contact of the layers under the influence of temperature loading was carried out. To build a spatial model, a load option is selected with temperature loads (according to the sine law) and boundary conditions (Navier), which lead to the distribution of the desired functions in terms of a plate with trigonometric harmonics of the Fourier series. A polynomial approximation of the desired functions by thickness is involved. Using the model in question, an analysis of flat layered composite shells on a rigid base with a sliding contact of the layers under the influence of temperature loading was carried out. The considered example showed that the proposed model provides sufficient accuracy in the calculations of layered shallow shells when considering each layer within one sublayer. The proposed approach can be used as a reference method for testing applied approaches in calculating various stress states of layered flat composite shells.


Sign in / Sign up

Export Citation Format

Share Document