scholarly journals Numerical study of gas dynamics and heat transfer in matrix channels at various rib angles

2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.

Author(s):  
Sunil Patil ◽  
Teddy Sedalor ◽  
Danesh Tafti ◽  
Srinath Ekkad ◽  
Yong Kim ◽  
...  

Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.


Author(s):  
Abhishek B. Bhagwat ◽  
Arunkumar Sridharan

Jet impingement cooling has been studied extensively as this finds applications in the areas of reactor safety, electronic cooling, etc. Here, the convective heat transfer process between the air jet impingement on a uniformly heated inclined flat plate is studied numerically. In this numerical study, 3D simulations are carried out using commercial CFD code to investigate the effect of angle of inclination of plate, Reynolds number, and distance between the nozzle exit and the plate on the heat transfer characteristics. V2F model has been used to model turbulence for various nozzle–plate distance and Reynolds number. It can be concluded that V2F model predicts the Nusselt number variation on the plate satisfactorily. It is observed that point of maximum heat transfer is at the stagnation point in case of vertical jet impinging on a horizontal plate, while it shifts away from the point of impingement for the case of a vertical jet impinging on an inclined flat surface. The shift is toward the “compression side” or the “uphill side” of the air jet. The results are validated with experimental data from the literature. Detailed analysis of local heat transfer coefficients, velocity contours, temperature contours, and Nusselt number variations on the flat plate is presented.


1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


Author(s):  
L. Almanza-Huerta ◽  
A. Hernandez-Guerrero ◽  
M. Krarti ◽  
J. M. Luna

The present paper provides a numerical study of a parametric analysis of a bayonet tube with a special type of extended surface during the laminar-turbulent transition. The working internal fluid is air. Attention is focused on the heat transfer characteristics of the tube. The results constitute a systematic investigation of the effect of the extended surface located along the annulus of the bayonet on the overall heat transfer rate. The effects of the variation of some parameters related to the extended surface aiming to attain the maximum heat transfer with the minimum pressure drop are discussed. Comparisons between designs with and without extended surface are also made.


2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
J. F. Derakhshandeh ◽  
Md. Mahbub Alam

The flow around a rectangular cylinder mounted in the vicinity of a hot wall is numerically studied at a Reynolds number of 200. While the cylinder chord-to-height ratio C/W is varied from 2 to 10, the gap distance G from the wall to the cylinder is changed from 0.25 to 6.25. The focus of this study is given on the dependence of G/W and C/W on the heat transfer from the wall and associated physics. The variation in the Strouhal number is presented as a function of C/W. It is observed that the effect of G/W on the vortex dynamics and heat transfer is much more than that of C/W. Based on the dependence of the vortex dynamics and heat transfer on G/W, we have identified four distinct flows: no vortex street flow (G/W < 0.75), single-row vortex street flow (0.75 ≤ G/W ≤ 1.25), inverted two-row vortex street flow (1.25 < G/W ≤ 2.5), and two-row vortex street flow (G/W > 2.5). At the single-row vortex street flow, the two opposite-sign vortices appearing in a jetlike flow carry heat from the wall to the wake and then to the freestream. The maximum heat transfer is achieved at the single-row vortex street flow and 8% increase occurs at C/W = 2, G/W = 0.75–1.25.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Numerical assessments in the square channel heat exchanger installed with various parameters of V-orifices are presented. The V-orifice is installed in the heat exchanger channel with gap spacing between the upper-lower edges of the orifice and the channel wall. The purposes of the design are to reduce the pressure loss, increase the vortex strength, and increase the turbulent mixing of the flow. The influence of the blockage ratio and V-orifice arrangement is investigated. The blockage ratio, b/H, of the V-orifice is varied in the range 0.05–0.30. The V-tip of the V-orifice pointing downstream (V-downstream) is compared with the V-tip pointing upstream (V-upstream) by both flow and heat transfer. The numerical results are reported in terms of flow visualization and heat transfer pattern in the test section. The thermal performance assessments in terms of Nusselt number, friction factor, and thermal enhancement factor are also concluded. The numerical results reveal that the maximum heat transfer enhancement is found to be around 26.13 times higher than the smooth channel, while the optimum TEF is around 3.2. The suggested gap spacing for the present configuration of the V-orifice channel is around 5–10%.


Author(s):  
Abdulrahman Alenezi ◽  
Abdulrahman Almutairi ◽  
Hamad Alhajeri ◽  
Abdulaziz Gamil ◽  
Faisal Alshammari

Abstract A detailed heat transfer numerical study of a three-dimensional impinging jet on a roughened isothermal surface is presented and is investigated from flow physics vantage point under the influence of different parameters. The effects of the Reynolds number, roughness location, and roughness dimension on the flow physics and heat transfer parameters are studied. Additionally, the relations between average heat transfer coefficient (AHTC) and flow physics including pressure, wall shear and flow vortices with thermodynamic nonequilibrium are offered. This paper studies the effect of varying both location and dimension of the roughness element which took the shape of square cross-sectional continuous ribs to deliver a favorable trade-off between total pressure loss and heat transfer rate. The roughness element was tested for three different radial locations (R/D) = 1, 1.5, and 2 and at each location its height (i.e., width) (e) was changed from 0.25 to 1 mm in incremental steps of 0.25. The study used a jet angle (α) of 90 deg, jet-to-target distance (H/D = 6), and Re ranges from 10,000 to 50,000, where H is the vertical distance between the target plate and jet exit. The results show that the AHTC can be significantly affected by changing the geometry and dimensions of the roughness element. This variation can be either an augmentation of, or decrease in, the (HTC) when compared with the baseline case. An enhancement of 12.9% in the AHTC was achieved by using optimal location and dimensions of the roughness element at specific Reynolds number. However, a diminution between 10% and 30% in (AHTC) was attained by the use of rib height e = 1 mm at Re = 50k. The variation of both rib location and height showed better contribution in increasing heat transfer for low-range Reynolds numbers.


Volume 1 ◽  
2004 ◽  
Author(s):  
D. P. Mishra ◽  
D. Mishra

An experimental investigation of the impinging jet cooling from a heated flat plate has been carried out for several Reynolds numbers (Re) and nozzle to plate distances. The present results indicate that the maximum heat transfer occurs from the heated plate at stagnation point and decreases with radial distances for all cases. The maximum value of the stagnation as well as average Nusselt number is found to occur at separation distance, H/D = 6.0 for Re = 55000. An attempt is also made to study effects of nozzle exit configuration on the heat transfer using a sharp edged orifice for same set of Reynolds numbers and nozzle to plate distance. The stagnation Nusselt numbers of sharp orifice jets are found to be enhanced by around 16–21.4% in comparison to that of square edged orifice. However, the enhancement in the average Nusselt number of sharp orifice is found to be in the range of 7–18.9% as compared to the square edged orifice. The maximum enhancement of 18.9% in average Nu is achieved for Re = 55 000 at H/D = 6. Two separate correlations in terms of Nuo, Re, H/D for both square and sharp edged orifice are obtained which will be useful for designing impinging cooling system.


2012 ◽  
Vol 516-517 ◽  
pp. 249-252 ◽  
Author(s):  
Bing Chang Yang ◽  
Dong Xu Jin

Heat transfer enhancement by pulsating flow in a triangular grooved channel has been experimentally investigated. Effects of Reynolds number Re, Strouhal number St, pulsation amplitude A on the heat transfer enhancement were studied. The experimental results show that, the pulsating flow can significantly enhance heat transfer compared to the steady flow case, for instance, an enhancement of 115% is achieved at Re=400, A=0.5 and St=0.3. There exists an optimal Strouhal number corresponding to the maximum heat transfer enhancement factor. The heat transfer enhancement factor increases with the increase of Reynolds number and pulsation amplitude.


Sign in / Sign up

Export Citation Format

Share Document