scholarly journals The influence of color temperature mismatch in star simulator on positioning accuracy and magnitude measurement by star sensor

2021 ◽  
Vol 2132 (1) ◽  
pp. 012034
Author(s):  
Zhiyong Wang ◽  
Shishen Liu ◽  
Hao Sun ◽  
Jingjing Zhang ◽  
Ruyou Li ◽  
...  

Abstract During the calibrating of star sensor, the calibration accuracy is greatly affected by the mismatch between the color temperature of the light and the to-be-measured star, which further affects the attitude measurement accuracy. This paper studied the near-infrared spectra of stars with different color temperatures, and analyzed the errors on star positioning and magnitude measurement of star sensor due to the color temperature mismatch. The results showed that in the central field of view, the spot centroid deviation caused by spectral mismatch is smaller than that in the edge field of view.And the defocus of the imaging surface also affects the spot centroid deviation. Besides, when calibrating with 6000K color temperature light, the maximum measurement error can reach -1.9126 magnitude.

2008 ◽  
Vol 4 (S258) ◽  
pp. 189-196
Author(s):  
A. Calamida ◽  
G. Bono ◽  
P. B. Stetson ◽  
M. Dall'Ora ◽  
M. Monelli ◽  
...  

AbstractWe devised a new method to estimate globular cluster absolute ages by adopting the knee of the bending of the lower main-sequence (MS) in the Near-Infrared (NIR)J,J-Kscolor-magnitude diagram. The color difference between this feature and the Turn-Off point is strongly correlated to the cluster age. This method is marginally affected by distance and reddening uncertainties, and by the possible occurrence of differential reddening. Furthermore, the knee location does not depend on the cluster age and it is a robust theoretical prediction. We adopted accurateJ,Ks-band photometry collected with both MAD/VLT and SOFI/NTT for the Galactic globular cluster NGC 3201 to identify the location of the knee atJ~19.90 ±0.03 andJ-Ks~0.76±0.02 mag. The comparison with different sets of cluster isochrones, transformed adopting different Color–Temperature–Relations (CTRs), shows that the models are slightly redder than the observations forJ> 19 mag. This difference could be due to the presence of a calibration drift or to a problem of the CTRs in this magnitude range.


2020 ◽  
Vol 16 ◽  
Author(s):  
Linqi Liu ◽  
JInhua Luo ◽  
Chenxi Zhao ◽  
Bingxue Zhang ◽  
Wei Fan ◽  
...  

BACKGROUND: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol and physcion) are its main effective components as purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index while the content of each compound has not been specified. METHODS: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods according to Kennard and Stone algorithm for dividing the calibration/prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values. RESULTS: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411 and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365 and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%. CONCLUSION: The nonlinear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.


2007 ◽  
Vol 584 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Lijuan Xie ◽  
Yibin Ying ◽  
Tiejin Ying ◽  
Haiyan Yu ◽  
Xiaping Fu

1993 ◽  
Vol 1 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Robert ◽  
M.F. Devaux ◽  
A. Qannari ◽  
M. Safar

Multivariate data treatments were applied to mid and near infrared spectra of glucose, fructose and sucrose solutions in order to specify near infrared frequencies that characterise each carbohydrate. As a first step, the mid and near infrared regions were separately studied by performing Principal Component Analyses. While glucose, fructose and sucrose could be clearly identified on the similarity maps derived from the mid infrared spectra, only the total sugar content of the solutions was observed when using the near infrared region. Characteristic wavelengths of the total sugar content were found at 2118, 2270 and 2324 nm. In a second step, the mid and near infrared regions were jointly studied by a Canonical Correlation Analysis. As the assignments of frequencies are generally well known in the mid infrared region, it should be useful to study the relationships between the two infrared regions. Thus, the canonical patterns obtained from the near infrared spectra revealed wavelengths that characterised each carbohydrate. The OH and CH combination bands were observed at: 2088 and 2332 nm for glucose, 2134 and 2252 nm for fructose, 2058 and 2278 nm for sucrose. Although a precise assignment of the near infrared bands to chemical groups within the molecules was not possible, the present work showed that near infrared spectra of carbohydrates presented specific features.


1995 ◽  
Vol 247 (1-2) ◽  
pp. 57-62 ◽  
Author(s):  
Robert D. Bolskar ◽  
Sean H. Gallagher ◽  
Robert S. Armstrong ◽  
Peter A. Lay ◽  
Christopher A. Reed

Sign in / Sign up

Export Citation Format

Share Document