scholarly journals Transport properties of HMTSF-TCNQ up to 8 GPa and a novel hysteresis and quantum oscillatory behavior in magnetoresistance in magnetic field up to 31 Tesla

2010 ◽  
Vol 215 ◽  
pp. 012064 ◽  
Author(s):  
K Murata ◽  
K Yokogawa ◽  
J S Brooks ◽  
A Kismarahardja ◽  
E Steven ◽  
...  
2021 ◽  
Vol 64 (8) ◽  
Author(s):  
HongHui Wang ◽  
ZhaoHui Cheng ◽  
MengZhu Shi ◽  
DongHui Ma ◽  
WeiZhuang Zhuo ◽  
...  

Author(s):  
Masataka Takeda ◽  
Atsushi Teruya ◽  
Taro Uejo ◽  
Yuichi Hiranaka ◽  
Ai Nakamura ◽  
...  

2007 ◽  
Vol 21 (08n09) ◽  
pp. 1445-1449
Author(s):  
K. TAKEHANA ◽  
Y. IMANAKA ◽  
T. TAKAMASU ◽  
M. HENINI

We have investigated transport properties in high magnetic field of a gated two-dimensional electron system (2DES) separated by a thin barrier from a layer of self-assembled InAs quantum dots (QDs) in the quantum Hall regime. The quality of 2DES was found to be high enough to observe both integer and fractional quantum Hall effect (QHE), despite the proximity of the QD layer to the 2DES. However, significant suppression of the magnetoresistance (ρ xx ) and Hall resistance (ρ xy ) were observed in higher magnetic field range of filling factor ν < 1 when a positive voltage was applied to the front gate. The gate voltage dependence of ρ xx and ρ xy shows a well-defined hysteresis loop at the narrow gate voltage range between -0.2 and +0.2 V at ν < 1, while no anomaly was observed at ν > 1. We deduce that charging and discharging of QDs occurs when the gate voltage is varied around Vg ~ 0 V, which indicates that the electron charge states of the QDs affect the transport properties of the nearby 2DES only at ν < 1. We infer that the spin-flip process induces a non-equilibrium state in the 2DEG, which causes the suppression of ρ xx and ρ xy .


Author(s):  
Mohammad Alipour zadeh ◽  
Yaser Hajati ◽  
Imam Makhfudz

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin-orbit coupling (SOC) and large direct bandgap, the transport properties of a normal/ferromagnetic/normal (NFN) WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light (∆Ω) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying ∆Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, resulting in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or ∆Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or ∆Ω a transmission valve capable of giving a switchable fully spinvalley filtering effect. These findings suggest some alternate methods for providing high-efficiency spin and valley filtering devices based on WSe2.


2021 ◽  
Author(s):  
Elham Sadeghi ◽  
Hamed Rezania

Abstract In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, we address the temperature dependence of electrical and thermal conductivities as well as Seebeck coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to study thermoelectric and transport properties of Lieb lattice in the context of Kane-Mele model Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease of gap 1 parameter causes the reduction of thermal conductivity. There is a peak in temperature dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. Both electrical and thermal conductivities increase with increasing the temperature at low amounts of temperature due to the increasing of transition rate of charge carriers and excitation of them to the conduction bands. Also we have studied the temperature dependence of spin susceptibility of Lieb monolayer due to both spin orbit coupling and magnetic field factors in details.


1995 ◽  
Vol 74 (22) ◽  
pp. 4515-4518 ◽  
Author(s):  
J. M. Gallego ◽  
D. Lederman ◽  
S. Kim ◽  
Ivan K. Schuller

2009 ◽  
Vol 80 (10) ◽  
Author(s):  
J. M. Barandiarán ◽  
V. A. Chernenko ◽  
P. Lázpita ◽  
J. Gutiérrez ◽  
J. Feuchtwanger

1993 ◽  
Vol 3 (1) ◽  
pp. 1208-1210
Author(s):  
D.H. Kim ◽  
D.J. Miller ◽  
J.D. Hettinger ◽  
K.E. Gray ◽  
P.G. Landis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document