Photo- and exchange-field controlled line-type resonant peaks and enhanced spin and valley polarizations in a magnetic WSe2 junction

Author(s):  
Mohammad Alipour zadeh ◽  
Yaser Hajati ◽  
Imam Makhfudz

Abstract Existing resonant tunneling modes in the shape of line-type resonances can improve the transport properties of the junction. Motivated by the unique structural properties of monolayer WSe2 e.g. significant spin-orbit coupling (SOC) and large direct bandgap, the transport properties of a normal/ferromagnetic/normal (NFN) WSe2 junction with large incident angles in the presence of exchange field (h), off-resonance light (∆Ω) and gate voltage (U) is studied. In a certain interval of U, the transmission shows a gap with optically controllable width, while outside it, the spin and valley resolved transmissions have an oscillatory behavior with respect to U. By applying ∆Ω (h), an optically (electrically) switchable perfect spin and valley polarizations at all angles of incidence have been found. For large incident angles, the transmission resonances change to spin-valley-dependent separated ideal line-type resonant peaks with respect to U, resulting in switchable perfect spin and valley polarizations, simultaneously. Furthermore, even in the absence of U, applying h or ∆Ω at large incident angles can give some spin-valley dependent ideal transmission peaks, making h or ∆Ω a transmission valve capable of giving a switchable fully spinvalley filtering effect. These findings suggest some alternate methods for providing high-efficiency spin and valley filtering devices based on WSe2.

2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yipeng An ◽  
Kun Wang ◽  
Shijing Gong ◽  
Yusheng Hou ◽  
Chunlan Ma ◽  
...  

AbstractTwo-dimensional (2D) magnetic materials are essential for the development of the next-generation spintronic technologies. Recently, layered van der Waals (vdW) compound MnBi2Te4 (MBT) has attracted great interest, and its 2D structure has been reported to host coexisting magnetism and topology. Here, we design several conceptual nanodevices based on MBT monolayer (MBT-ML) and reveal their spin-dependent transport properties by means of the first-principles calculations. The pn-junction diodes and sub-3-nm pin-junction field-effect transistors (FETs) show a strong rectifying effect and a spin filtering effect, with an ideality factor n close to 1 even at a reasonably high temperature. In addition, the pip- and nin-junction FETs give an interesting negative differential resistive (NDR) effect. The gate voltages can tune currents through these FETs in a large range. Furthermore, the MBT-ML has a strong response to light. Our results uncover the multifunctional nature of MBT-ML, pave the road for its applications in diverse next-generation semiconductor spin electric devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zainab Gholami ◽  
Farhad Khoeini

AbstractThe main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green’s function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.


1996 ◽  
Vol 37 (10) ◽  
pp. 4816-4844 ◽  
Author(s):  
Carlo Presilla ◽  
Johannes Sjöstrand

2021 ◽  
Author(s):  
Elham Sadeghi ◽  
Hamed Rezania

Abstract In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, we address the temperature dependence of electrical and thermal conductivities as well as Seebeck coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to study thermoelectric and transport properties of Lieb lattice in the context of Kane-Mele model Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease of gap 1 parameter causes the reduction of thermal conductivity. There is a peak in temperature dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. Both electrical and thermal conductivities increase with increasing the temperature at low amounts of temperature due to the increasing of transition rate of charge carriers and excitation of them to the conduction bands. Also we have studied the temperature dependence of spin susceptibility of Lieb monolayer due to both spin orbit coupling and magnetic field factors in details.


1995 ◽  
Vol 74 (22) ◽  
pp. 4515-4518 ◽  
Author(s):  
J. M. Gallego ◽  
D. Lederman ◽  
S. Kim ◽  
Ivan K. Schuller

Author(s):  
J. Zhou ◽  
R. G. Yang

We investigate the thermoelectric transport properties of Sb2Te3/Bi2Te3 quantum dot nanocomposites with spherical Sb2Te3 quantum dots arrays embedded in Bi2Te3 matrix through a two-channel transport model. In this model, the transport of quantum-confined electrons through the hopping mechanism is studied by tight-binding model together with Kubo formula and Green’s function method. The formation of minibands due to the quantum confinement and the phonon-bottleneck effect on carrier-phonon scattering are considered. The transport of bulk-like electrons is studied by Boltzmann-transport-equation-based model. We consider the intrinsic carrier scatterings as well as the carrier-interface scattering of these bulk-like electrons. Thermoelectric transport properties are studied with different quantum dot sizes, inter-dot distances, doping concentrations, and temperatures. We find that electrical conductivity and Seebeck coefficient can be enhanced simultaneously in Sb2Te3/Bi2Te3 quantum dot nanocomposites because of the formation of minibands and the phonon-bottleneck effect on carrier-phonon scattering. Our results could shed some light on the design of high-efficiency thermoelectric materials.


2020 ◽  
Vol 13 (9) ◽  
pp. 3093-3101 ◽  
Author(s):  
Yi Yang ◽  
Cheng Liu ◽  
Arup Mahata ◽  
Mo Li ◽  
Cristina Roldán-Carmona ◽  
...  

A universal vertically-rotated (VR) methodology is proposed to rotate the crystal orientation of 2D perovskites, which improves charge transport properties by several orders of magnitude and boosts the efficiency of 2D (n ≤ 4) PSCs to above 17%.


2021 ◽  
Vol 858 ◽  
pp. 158260
Author(s):  
Piotr Ruszała ◽  
Maciej J. Winiarski ◽  
Małgorzata Samsel-Czekała ◽  
Lan Maria Tran ◽  
Michał Babij ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document