scholarly journals Review of Research on System Thermal Inertia Modelling and Optimal Scheduling from the Perspective of Flexible Resources

2022 ◽  
Vol 2160 (1) ◽  
pp. 012051
Author(s):  
Lin Cong ◽  
Xichao Zhou ◽  
Na Li ◽  
Haifeng Zhu ◽  
Ying Fan ◽  
...  

Abstract The thermal inertia of the existing heating system is often considered an adverse factor, which will affect the operation of the system. However, under the perspective of resource flexibility, the thermal inertia of the system can effectively increase the flexibility of the system operation, significantly reduce the energy consumption and enhance the ability of energy supply and demand balance, and enhance the new energy integration, such as the wind power. Based on the flexible resources, it focuses on the study of the thermal inertia of the “network side” heating pipe network of the system and the optimal scheduling of the heating system. Combined with the thermal inertia of the pipe network, the operation characteristics of the power/heat output of the gas-steam combined cycle unit were analysed theoretically. On this basis, the optimal scheduling model of the system was established. Taking the energy supply system of an industrial park as an example, the model was verified to achieve a more stable power output effect of the unit.

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3566 ◽  
Author(s):  
Quanhui Che ◽  
Suhua Lou ◽  
Yaowu Wu ◽  
Xiangcheng Zhang ◽  
Xuebin Wang

With the grid-connected operation of large-scale wind farms, the contradiction between supply and demand of power systems is becoming more and more prominent. The introduction of multiple types of flexible resources provides a new technical means for improving the supply–demand matching relationship of system flexibility and promoting wind power consumption. In this paper, multi-type flexible resources made up of deep peak regulation of thermal units, demand response, and energy storage were utilized to alleviate the peak regulation pressure caused by large-scale wind power integration. Based on current thermal plant deep peak regulation technology, a three-phase peak regulation cost model of thermal power generation considering the low load fatigue life loss and oil injection cost of the unit was proposed. Additionally, from the perspective of supply–demand balance of power system flexibility, the flexibility margin index of a power system containing source-load-storage flexible resources was put forward to assess the contribution from each flexibility provider to system flexibility. Moreover, an optimal dispatching model of a multi-energy power system with large-scale wind power and multi-flexible resources was constructed, aimed at the lowest total dispatching cost of the whole scheduling period. Finally, the model proposed in this paper was validated by a modified RTS96 system, and the effects of different flexibility resources and wind power capacity on the optimal scheduling results were discussed.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2473
Author(s):  
Yujiang He ◽  
Xianbiao Bu

The energy reserves in hot dry rock and hydrothermal systems are abundant in China, however, the developed resources are far below the potential estimates due to immature technology of enhanced geothermal system (EGS) and scattered resources of hydrothermal systems. To circumvent these problems and reduce the thermal resistance of rocks, here a shallow depth enhanced geothermal system (SDEGS) is proposed, which can be implemented by fracturing the hydrothermal system. We find that, the service life for SDEGS is 14 years with heat output of 4521.1 kW. To extend service life, the hybrid SDEGS and solar energy heating system is proposed with 10,000 m2 solar collectors installed to store heat into geothermal reservoir. The service life of the hybrid heating system is 35 years with geothermal heat output of 4653.78 kW. The novelty of the present work is that the hybrid heating system can solve the unstable and discontinuous problems of solar energy without building additional back-up sources or seasonal storage equipment, and the geothermal thermal output can be adjusted easily to meet the demand of building thermal loads varying with outside temperature.


2015 ◽  
Vol 155 ◽  
pp. 485-501 ◽  
Author(s):  
Javier Silvente ◽  
Georgios M. Kopanos ◽  
Efstratios N. Pistikopoulos ◽  
Antonio Espuña

2021 ◽  
pp. 45-61
Author(s):  
I. Antypov ◽  
◽  
A. Mishchenko ◽  
O. Shelimanova ◽  
S. Tarasenko ◽  
...  

When assessing the thermal condition of the building and the parameters of the microclimate of the premises, the main factors influencing its thermal inertia were identified and taken into account. An assessment of the influence of the resistance of enclosing structures on the efficiency of the heating system, taking into account the influence of external and internal climatic parameters in the dynamic mode. It is shown that the time factor and depth of regulation, as well as the outdoor air temperature are important factors. Researches are carried out and the expediency of introduction of a duty mode of heating of buildings of HIGH SCHOOLS is estimated. The given algorithm of control of process of heat release (especially in the presence of a point of "breaking" - average (them) on the schedule) in addition increases accuracy of the decisions of the specified problems and reduces a temperature deviation by 4 ÷ 6 ° C in comparison with usual ("linear") dependence that allows to correct more precisely release of the heat carrier in system of heating of a structure at introduction of a standby mode. It was found that it took about 6.5 hours to achieve normalized air temperature and space heating in the forced (after a long stay on duty). It is shown that the heat consumption of the system in such conditions of its operation compared to the nominal mode increased by 25 % (taking into account the limit value of the specific allowance from table H1 DBN B.2.5-67: 2013 "Heating, ventilation and air conditioning"), but for the entire period the action of the standby mode savings amounted to about 6-8% of energy consumed. Taking into account the design of the outer walls of the object of study, the temperature graph of the heating system was adjusted taking into account the value of the internal heat capacity of the building when implementing on-duty heating, which, according to preliminary estimates, will: improve comfort in the room; to reduce heating costs of the educational and administrative building of NULES of Ukraine by 10-12 % for the heating period. Key words: microclimate, internal heat capacity of a building, standby mode, heating system, heat loss


Sign in / Sign up

Export Citation Format

Share Document