scholarly journals Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

2012 ◽  
Vol 364 ◽  
pp. 012138 ◽  
Author(s):  
Kyoo-seon Park ◽  
Taimoor Asim ◽  
Rakesh Mishra
2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Alexandrina Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire ◽  
Robert J. Ribando

Vertical axis wind turbines have always been a controversial technology; claims regarding their benefits and drawbacks have been debated since the initial patent in 1931. Despite this contention, very little systematic vertical axis wind turbine research has been accomplished. Experimental assessments remain prohibitively expensive, while analytical analyses are limited by the complexity of the system. Numerical methods can address both concerns, but inadequate computing power hampered this field. Instead, approximating models were developed which provided some basis for study; but all these exhibited high error margins when compared with actual turbine performance data and were only useful in some operating regimes. Modern computers are capable of more accurate computational fluid dynamics analysis, but most research has focused on horizontal axis configurations or modeling of single blades rather than full geometries. In order to address this research gap, a systematic review of vertical axis wind-power turbine (VAWT) was undertaken, starting with establishment of a methodology for vertical axis wind turbine simulation that is presented in this paper. Replicating the experimental prototype, both 2D and 3D models of a three-bladed vertical axis wind turbine were generated. Full transient computational fluid dynamics (CFD) simulations using mesh deformation capability available in ansys-CFX were run from turbine start-up to operating speed and compared with the experimental data in order to validate the technique. A circular inner domain, containing the blades and the rotor, was allowed to undergo mesh deformation with a rotational velocity that varied with torque generated by the incoming wind. Results have demonstrated that a transient CFD simulation using a two-dimensional computational model can accurately predict vertical axis wind turbine operating speed within 12% error, with the caveat that intermediate turbine performance is not accurately captured.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


2016 ◽  
Vol 24 (1) ◽  
pp. 89-111 ◽  
Author(s):  
Richard J. Preen ◽  
Larry Bull

An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Francesco Balduzzi ◽  
Marco Zini ◽  
Giovanni Ferrara ◽  
Alessandro Bianchini

Abstract Based on existing reports and databases, most of the installations in highly turbulent sites in fact fail to reach the expected energy yield, resulting in still or underperforming turbines that also give bad press for the technology. A better understanding of the real performance of wind turbines under highly turbulent conditions is then pivotal to ensure the economic viability of new installations. To this end, the possible use of computational fluid dynamics (CFD) techniques could provide notable benefits, reducing the time-to-market and the cost with respect to experiments. On the other hand, it is intrinsically not easy to reproduce properly intense and large-scale turbulence with the techniques of common use for research and industry (e.g., CFD unsteady Reynolds-averaged Navier–Stokes (URANS)), while the only methods that are granted to do so (e.g., direct numerical simulation (DNS) or large eddy simulation (LES)) are often not computationally affordable. Moving from this background, this study presents the development of a numerical strategy to exploit at their maximum level the capabilities of an unsteady RANS approach in order to reproduce fields of macroturbulence of use for wind energy applications. The study is made of two main parts. In the first part, the numerical methodology is discussed and assessed based on real wind tunnel data. The benefits and drawbacks are presented also in comparison to other existing methods. In the second part, it has been used to simulate the behavior under turbulence of a H Darrieus vertical-axis wind turbine, for which unique wind tunnel data were available. The simulations, even if preliminary, showed good matching with experiments (e.g., confirming the increase of power), showing then the potential of the method.


2014 ◽  
Vol 1016 ◽  
pp. 554-558 ◽  
Author(s):  
Natapol Korprasertsak ◽  
Nataporn Korprasertsak ◽  
Thananchai Leephakpreeda

In Thailand, the average wind speed is generally quite low (≈ 3 - 4 m/s). Although Vertical Axis Wind Turbines (VAWTs) are designed for low speed wind, standalone VAWTs are still unable to generate power satisfactorily under that practical condition. This study introduces a new design of a wind flow controlling device, called a “wind booster”, by utilizing Computational Fluid Dynamics (CFD). A wind booster is developed for incorporating with a VAWT in order to increase the performance of the VAWT and to overcome the limitation of harvesting energy with low availability at low speed wind. The guiding and throttling effects of the optimal design of the wind booster are able to increase the angular velocity of VAWTs which leads to an increase in power generated from VAWTs.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2286
Author(s):  
Yutaka Hara ◽  
Yoshifumi Jodai ◽  
Tomoyuki Okinaga ◽  
Masaru Furukawa

To investigate the optimum layouts of small vertical-axis wind turbines, a two-dimensional analysis of dynamic fluid body interaction is performed via computational fluid dynamics for a rotor pair in various configurations. The rotational speed of each turbine rotor (diameter: D = 50 mm) varies based on the equation of motion. First, the dependence of rotor performance on the gap distance (gap) between two rotors is investigated. For parallel layouts, counter-down (CD) layouts with blades moving downwind in the gap region yield a higher mean power than counter-up (CU) layouts with blades moving upwind in the gap region. CD layouts with gap/D = 0.5–1.0 yield a maximum average power that is 23% higher than that of an isolated single rotor. Assuming isotropic bidirectional wind speed, co-rotating (CO) layouts with the same rotational direction are superior to the combination of CD and CU layouts regardless of the gap distance. For tandem layouts, the inverse-rotation (IR) configuration shows an earlier wake recovery than the CO configuration. For 16-wind-direction layouts, both the IR and CO configurations indicate similar power distribution at gap/D = 2.0. For the first time, this study demonstrates the phase synchronization of two rotors via numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document