scholarly journals Theoretical calculations of X-ray absorption spectra of a copper mixed ligand complex using computer code FEFF9

2014 ◽  
Vol 534 ◽  
pp. 012045 ◽  
Author(s):  
A Gaur ◽  
B D Shrivastava
2003 ◽  
Vol 58 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Rosa Carballo ◽  
Berta Covelo ◽  
Ezequiel M. Vázquez-Lópeza ◽  
Alfonso Castiñeiras ◽  
Juan Niclós

Abstract A new mixed-ligand complex of copper(II) with 1,10-phenanthroline and 2-methyllactate was prepared. [Cu(HmL)2(phen)] ·2H2O (where HmL = monodeprotonated 2-methyllactic acid) was characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements at room temperature, thermogravimetric analysis and X-ray diffractometry. The copper atom is in a tetragonally distorted octahedral environment and the 2-methyllactato ligand is bidentately chelating. The presence of lattice water molecules mediates the formation of a three-dimensional network.


2013 ◽  
Vol 27 (16) ◽  
pp. 1330012 ◽  
Author(s):  
A. KOTANI

We consider two different resonant X-ray emission spectra for Ce compounds: Ce 3d to 2p X-ray emission (denoted by 3d-RXES) and valence to 2p X-ray emission (v-RXES), both of which follow the Ce 2p to 5d resonant excitation. We propose that the comparison of the 3d- and v-RXES spectra is a new powerful method of directly detecting the core-hole effect in the final state of Ce L 3 X-ray absorption spectra (XAS). We applied this method to recent experimental RXES spectra for CeO 2 and CeFe 2, and showed unambiguously that the core-hole effect should be essential in the XAS of both materials. This result is confirmed by theoretical calculations, which reproduce well the experimental RXES and XAS spectra. We conclude that the ground state of CeO 2 is in the mixed state of 4f0 and [Formula: see text] configurations, where [Formula: see text] is a ligand hole, instead of a pure 4f0 configuration which was proposed recently by first-principles energy band calculations. Also, we conclude that the double peaks observed in L 3 XAS of CeFe 2 are caused by the 4f0 and 4f1 configurations, which are mixed in the ground state but separated in energy by the large core-hole potential in the final state of XAS.


Author(s):  
M. Struhatska ◽  
I. Olyshevets ◽  
V. Dyakonenko ◽  
V. Ovchynnikov ◽  
S. Shishkina ◽  
...  

A new cationic mixed-ligand complex [Lа(L)2bipy2]BPh4 (where L-= bis(N,N'-diethylamide)(N'-trichloroacetyl)-triamidophosphate anion, bipy = 2,2'-bipyridine) has been synthesized and studied by the means of IR, 1H NMR spectroscopy, thermogravimetric and X-ray structural analyses. Low-frequency shifts of the absorption bands of the carbonyl and phosphoryl groups of phosphorylated ligand in the IR spectra of the complex compared with similar absorption bands in the spectrum of "free" CAPh ligand are Δν(C = O) = 117 cm–1 and Δν(P = O) = 137 cm–1. The analysis of integral signal intensity in the investigated NMR spectra of coordination compounds [Lа(L)2bipy2]BPh4 indicates the molar ratio of ligand : bipyridine : tetraphenylborate anion as a 2:2:1, which corresponds to the proposed structure of the complexes. The compound has been obtained in monocrystalline form. The structure of the complex has been determined by X-ray structural analysis, its ionic structure was proved, and the coordination of two CAPh ligands through the oxygen atoms of the carbonyl and phosphoryl groups was confirmed. Based on the structural data, it was determined that the La3+ ion is octocoordinated (surrounded by four oxygen atoms from two chelated phosphoryl ligands and four nitrogen atoms from two 2,2'-bipyridine molecules). The coordination polyhedron of central ion is interpreted as a square antiprism. Complex cations and tetraphenylborate anions are connected both by electrostatic interaction and by weak intermolecular C – H ∙∙∙ π-contacts between phenyl substituents of BPh4- and molecules of 2,2'-bipyridine. It was established by thermogravimetric analysis that the complex [Lа(L)2bipy2]BPh4 obtained is thermally stable up to a temperature of 150 °C. Significant decomposition of the complex begins at a temperature of 150 °C, occurs in one stage and most intensively continues up to 300 °C. The total weight loss is 78 %.


2020 ◽  
Author(s):  
Conor Rankine ◽  
Marwah Madkhali ◽  
Thomas Penfold

<p>X-ray spectroscopy delivers strong impact across the physical and biological sciences by providing end-users with highly-detailed information about the electronic and geometric structure of matter. To decode this information in challenging cases, e.g. <i>in operando</i> catalysts, batteries, and temporally-evolving systems, advanced theoretical calculations are necessary. The complexity and resource requirements often render these out of reach for end-users, and therefore data are often not interpreted exhaustively, leaving a wealth of valuable information unexploited. In this paper, we introduce supervised machine learning of X-ray absorption spectra, by developing a deep neural network (DNN) that is able to estimate Fe K-edge X-ray absorption near-edge structure spectra in less </p><p>than a second with no input beyond geometric information about the local environment of the absorption site. We predict peak positions with sub-eV accuracy and peak intensities with errors over an order of magnitude smaller than the spectral variations that the model is engineered to capture. The performance of the DNN is promising, as illustrated by its application to the structural refinement of iron(II)tris(bipyridine) and nitrosylmyoglobin, but also highlights areas for which future developments should focus.</p>


1990 ◽  
Vol 41 (1) ◽  
pp. 82-95 ◽  
Author(s):  
J. Guo ◽  
D. E. Ellis ◽  
G. L. Goodman ◽  
E. E. Alp ◽  
L. Soderholm ◽  
...  

2016 ◽  
Vol 55 (11) ◽  
pp. 5558-5569 ◽  
Author(s):  
Eléonor Acher ◽  
Yanis Hacene Cherkaski ◽  
Thomas Dumas ◽  
Christelle Tamain ◽  
Dominique Guillaumont ◽  
...  

2020 ◽  
Author(s):  
Conor Rankine ◽  
Marwah Madkhali ◽  
Thomas Penfold

<p>X-ray spectroscopy delivers strong impact across the physical and biological sciences by providing end-users with highly-detailed information about the electronic and geometric structure of matter. To decode this information in challenging cases, e.g. <i>in operando</i> catalysts, batteries, and temporally-evolving systems, advanced theoretical calculations are necessary. The complexity and resource requirements often render these out of reach for end-users, and therefore data are often not interpreted exhaustively, leaving a wealth of valuable information unexploited. In this paper, we introduce supervised machine learning of X-ray absorption spectra, by developing a deep neural network (DNN) that is able to estimate Fe K-edge X-ray absorption near-edge structure spectra in less </p><p>than a second with no input beyond geometric information about the local environment of the absorption site. We predict peak positions with sub-eV accuracy and peak intensities with errors over an order of magnitude smaller than the spectral variations that the model is engineered to capture. The performance of the DNN is promising, as illustrated by its application to the structural refinement of iron(II)tris(bipyridine) and nitrosylmyoglobin, but also highlights areas for which future developments should focus.</p>


Sign in / Sign up

Export Citation Format

Share Document