scholarly journals Medipix3 proton and carbon ion measurements across full energy ranges and at clinical flux rates in MedAustron IR1

2021 ◽  
Vol 16 (12) ◽  
pp. C12002
Author(s):  
N.J.S. Bal ◽  
C.S. Schmitzer ◽  
A. De Franco ◽  
S. Enke

Abstract The Medipix3, a hybrid pixel detector with a silicon sensor, has been evaluated as a beam instrumentation device with proton and carbon ion measurements in the non-clinical research room (IR1) of MedAustron Ion Therapy Center. Protons energies are varied from 62.4 to 800 MeV with 104 to 108 protons per second impinging on the detector surface. For carbon ions, energies are varied from 120 to 400 MeV/amu with 107 to 108 carbon ions per second. Measurements include simultaneous high resolution, beam profile and beam intensity with various beam parameters at up to 1000 FPS (frames per second), count rate linearity and an assessment of radiation damage after the measurement day using an x-ray tube to provide a homogeneous radiation measurement. The count rate linearity is found to be linear within the uncertainties (dominated by accelerator related sources due to special setup) for the measurements without degraders. Various frequency components are identified within the beam intensity over time firstly including 49.98 Hz with standard deviation, σ = 0.29, secondly 30.55 Hz σ = 0.55 and thirdly 252.51 Hz σ = 0.83. A direct correlation between the number of zero counting and noisy pixels is observed in the measurements with the highest flux. No conclusive evidence of long term radiation damage was found as a result of these measurements over one day.

2009 ◽  
Vol 02 (01) ◽  
pp. 157-178 ◽  
Author(s):  
Marco G. Pullia

Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.


2016 ◽  
Vol 5 ◽  
Author(s):  
Thomas Tessonnier ◽  
Tiago Marcelos ◽  
Andrea Mairani ◽  
Stephan Brons ◽  
Katia Parodi

2021 ◽  
Author(s):  
Noriaki Hamatani ◽  
Toshiro Tsubouchi ◽  
Masaaki Takashina ◽  
Masashi Yagi ◽  
Tatsuaki Kanai

Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 379-387 ◽  
Author(s):  
Naoya Shikazono ◽  
Atsushi Tanaka ◽  
Hiroshi Watanabe ◽  
Shigemitsu Tano

Abstract To elucidate the nature of structural alterations in plants, three carbon ion-induced mutations in Arabidopsis thaliana, gl1-3, tt4(C1), and ttg1-21, were analyzed. The gl1-3 mutation was found to be generated by an inversion of a fragment that contained GL1 and Atpk7 loci on chromosome 3. The size of the inverted fragment was a few hundred kilobase pairs. The inversion was found to accompany an insertion of a 107-bp fragment derived from chromosome 2. The tt4(C1) mutation was also found to be due to an inversion. The size of the intervening region between the breakpoints was also estimated to be a few hundred kilobase pairs. In the case of ttg1-21, it was found that a break occurred at the TTG1 locus on chromosome 5, and reciprocal translocation took place between it and chromosome 3. From the sequences flanking the breakpoints, the DNA strand breaks induced by carbon ions were found to be rejoined using, if present, only short homologous sequences. Small deletions were also observed around the breakpoints. These results suggest that the nonhomologous end-joining (NHEJ) pathway operates after plant cells are exposed to ion particles.


2017 ◽  
Vol 63 (1) ◽  
pp. 01TR02 ◽  
Author(s):  
Christian P Karger ◽  
Peter Peschke

2013 ◽  
Vol 58 (9) ◽  
pp. 2879-2899 ◽  
Author(s):  
C Robert ◽  
G Dedes ◽  
G Battistoni ◽  
T T Böhlen ◽  
I Buvat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document