scholarly journals Can boreal peatlands with pools be net sinks for CO 2 ?

2015 ◽  
Vol 10 (3) ◽  
pp. 035002 ◽  
Author(s):  
Luc Pelletier ◽  
Ian B Strachan ◽  
Nigel T Roulet ◽  
Michelle Garneau
Keyword(s):  
2016 ◽  
Vol 372 ◽  
pp. 19-27 ◽  
Author(s):  
Dan K. Thompson ◽  
Brian N. Simpson ◽  
André Beaudoin

2021 ◽  
Vol 769 ◽  
pp. 145212
Author(s):  
K. Nelson ◽  
D. Thompson ◽  
C. Hopkinson ◽  
R. Petrone ◽  
L. Chasmer

2021 ◽  
Author(s):  
Laura Bourgeau-Chavez ◽  
Jeremy Graham ◽  
Andrew Poley ◽  
Dorthea Leisman ◽  
Michael Battaglia

<p>Eighty percent of global peatlands are distributed across the boreal and subarctic regions, storing an estimated 30% of earth’s soil organic carbon (1,016 to 1,105 Gt C) despite representing only about 3% of the global land surface. The accumulation of C in peatlands generally depends on hydrologic conditions that maintain saturated soils and impede rates of decomposition. Boreal Peatlands have provided rich reservoirs of stored C for millennia. However, with climate change, warming and drying patterns across the boreal and arctic are resulting in dramatic changes in ecosystems and putting these systems at risk of changing from a C sink to a source.  Recent changes in climate including earlier springs, longer summers and changes in moisture patterns across the landscape, are affecting wildfire regimes of the boreal region including intensity, severity and frequency of wildfires. This in turn has potential to cause shifts in successional trajectories.  Understanding how these changes in climate are affecting peatlands and their vulnerability to wildfire has been a focus of study of the research team since 2009.  Soil moisture is one variable which can provide information to understand wildfire behavior including the depth of peat consumption in these wildfires but it also has a direct effect on post-fire successional trajectories. Further it is needed to understand methane emissions from peatlands.  To develop the soil moisture retrieval algorithms, we studied a range of boreal peatland sites (bogs and fens) stratified across geographic regions from 2012-2014.  We developed soil moisture retrieval algorithms from polarimetric C-band (5.7 cm wavelength) synthetic aperture radar (SAR) data.  Peatlands have low enough aboveground biomass (<3.0 kg/m<sup>2</sup>) to allow this shorter wavelength SAR to penetrate the canopy to reach the ground surface.  Data from over 60, 4 ha sites were collected over 3 seasons from Alaska and Michigan USA and Alberta Canada.  Both multi-linear regressions and general additive models (GAM) were developed.  Using both polarimetric SAR parameters that are sensitive to vegetation structure and parameters most sensitive to surface soil moisture in the models provided the best results.  GAM models were tested in an independent study area, Northwest Territories (NWT), Canada.  The sites of NWT were sampled in 2016-2019 coincident to Radarsat-2 polarimetric image collections.  The high accuracy results will be presented as well as methods developed to use multidate C-band data from Sentinel-1 to classify soil drainage (well drained to poorly drained) in recently burned peatlands.  These products are being used in a fire effects and emissions model, CanFIRE, as we parameterize it for peatlands; as well as the Functionally-Assembled Terrestrial Ecosystem Simulator <strong>(</strong>FATES) to understand the effects of wildfire and hydrology on peatland ecosystems.  Characterization and quantification of boreal peatlands in global C cycling is critical for proper accounting given that peatlands play a significant role in sequestering and releasing large amounts of C. The ability to retrieve soil moisture from C-band SAR, therefore, provides a means to monitor a key variable in scaling C flux estimates as well as understanding the vulnerability and resiliency of boreal peatlands to climate change.</p><p> </p>


1998 ◽  
Vol 78 (1) ◽  
pp. 163-169 ◽  
Author(s):  
J. S. Bhatti ◽  
N. W. Foster ◽  
P. W. Hazlett

Vertical distribution of fine root biomass and nutrient content was examined within a black spruce (Picea mariana) stand growing on a boreal peat soil in northeastern Ontario. The influence of site physical and chemical properties on fine root biomass production was assessed. More then 80% of the fine roots were present in moss plus the top 10 cm of peat where nutrients and aeration are most favourable. The fine root biomass (W/V) was significantly higher with alder (5.9 kg m−3) (Alnus rugosa) as understory vegetation compared to non-alder locations (2.9 kg m−3). Total nutrient content in fine roots was 54, 3.2, 5.4, 63 and 5.7 kg ha−1 on the alder site and 20, 1.4, 2.3, 28 and 4.2 kg ha−1 of N, P, K, Ca, and Mg on the non-alder site, respectively. The mass (W/V) of nutrients in fine roots was strongly dependent upon the availability of nutrients in the peat. Fine root content had a strong positive relationship with peat available P and exchangeable K contents suggesting that P and K may be limiting nutrients for black spruce in this peat soil. Key words: Nitrogen, phosphorus, potassium, boreal peatlands, aeration, water table


2020 ◽  
Vol 478 ◽  
pp. 118494
Author(s):  
Kari Minkkinen ◽  
Paavo Ojanen ◽  
Markku Koskinen ◽  
Timo Penttilä

Author(s):  
M. P. Waldrop ◽  
J. McFarland ◽  
K. L. Manies ◽  
M. C. Leewis ◽  
S. J. Blazewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document