scholarly journals Climate change predicted to lengthen transatlantic travel times

2016 ◽  
Vol 11 (3) ◽  
pp. 031002 ◽  
Author(s):  
Isla R Simpson
2015 ◽  
Vol 13 (2) ◽  
pp. 93 ◽  
Author(s):  
Karl Kim, PhD ◽  
Pradip Pant, PhD ◽  
Eric Yamashita, MURP

Honolulu is susceptible to coastal flooding hazards. Like other coastal cities, Honolulu's long-term economic viability and sustainability depends on how well it can adapt to changes in the natural and built environment. While there is a disagreement over the magnitude and extent of localized impacts associated with climate change, it is widely accepted that by 2100 there will be at least a meter in sea level rise (SLR) and an increase in extreme weather events. Increased exposure and vulnerabilities associated with urbanization and location of human activities in coastal areas warrants serious consideration by planners and policy makers.This article has three objectives. First, flooding due to the combined effects of SLR and episodic hydrometeorological and geophysical events in Honolulu are investigated and the risks to the community are quantified. Second, the risks and vulnerabilities of critical infrastructure and the surface transportation system are described. Third, using the travel demand software, travel distances and travel times for evacuation from inundated areas are modeled.Data from three inundation models were used. The first model simulated storm surge from a category 4 hurricane similar to Hurricane Iniki which devastated the island of Kauai in 1992. The second model estimates inundation based on five tsunamis that struck Hawaii. A 1-m increase in sea level was included in both the hurricane storm surge and tsunami flooding models. The third model used in this article generated a 500-year flood event due to riverine flooding. Using a uniform grid cell structure, the three inundation maps were used to assess the worst case flooding scenario. Based on the flood depths, the ruling hazard (hurricane, tsunami, or riverine flooding) for each grid cell was determined. The hazard layer was analyzed with socioeconomic data layers to determine the impact on vulnerable populations, economic activity, and critical infrastructure. The analysis focused both on evacuation needs and the critical elements of the infrastructure system that are needed to ensure effective response and recovery in the advent of flooding.This study shows that the coastal flooding will seriously affect the economy and employment. Extreme flooding events could affect 38 percent of the freeways, 44 percent of the highways, 69 percent of the arterial roads, and 40 percent of the local streets in the area examined. Approximately 80 percent of the economy and 76 percent of the total employment in the urban core of Honolulu is exposed to flooding. Evacuation modeling, shelter accessibility, and travel time to shelter analyses revealed that there is a significant shortage in sheltering options, as well as increases in travel times and distances as inundation depth increases. The findings are useful for evacuation and shelter planning for extreme coastal events, as well as for climate change adaptation planning in Honolulu. Recommendations for emergency responders as well as those interested in the integration of long-term SLR and low probability, high consequence coastal hazards are included. The study shows how to integrate travel demand modeling across multiple hazards and threats related to evacuating, sheltering, and disaster risk reduction.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Author(s):  
Brian C. O'Neill ◽  
F. Landis MacKellar ◽  
Wolfgang Lutz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document