scholarly journals Floating axis wind turbines for offshore power generation—a conceptual study

2011 ◽  
Vol 6 (4) ◽  
pp. 044017 ◽  
Author(s):  
Hiromichi Akimoto ◽  
Kenji Tanaka ◽  
Kiyoshi Uzawa
2013 ◽  
Vol 133 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Hiroaki Sugihara ◽  
Akihiro Ogawa ◽  
Manabu Kuramoto ◽  
Fumio Ishikawa ◽  
Hideo Yata ◽  
...  

2018 ◽  
Vol 42 (6) ◽  
pp. 547-560 ◽  
Author(s):  
Fa Wang ◽  
Mario Garcia-Sanz

The power generation of a wind farm depends on the efficiency of the individual wind turbines of the farm. In large wind farms, wind turbines usually affect each other aerodynamically at some specific wind directions. Previous studies suggest that a way to maximize the power generation of these wind farms is to reduce the generation of the first rows wind turbines to allow the next rows to generate more power (coordinated case). Yet, other studies indicate that the maximum generation of the wind farm is reached when every wind turbine works at its individual maximum power coefficient CPmax (individual case). This article studies this paradigm and proposes a practical method to evaluate when the wind farm needs to be controlled according to the individual or the coordinated case. The discussion is based on basic principles, numerical computations, and wind tunnel experiments.


Author(s):  
Dandan Peng ◽  
Chenyu Liu ◽  
Wim Desmet ◽  
Konstantinos Gryllias

Abstract The deployment of wind power plants in cold climate becomes ever more attractive due to the increased air density resulting from low temperatures, the high wind speeds, and the low population density. However, the cold climate conditions bring some additional challenges as itt can easily cause wind turbine blades to freeze. The frizzing ice on blades not only increases the energy required for the rotation of blades, resulting in a reduction in the power generation, but also increases the amplitude of the blades’ vibrations, which may cause the blade to break, affecting the power generation performance of the wind turbine and poses a threat to its safe operation. Current published blade icing detection methods focus on studying the blade icing mechanism, building the model and then judging if it is iced or not. These models vary with different wind turbines and working conditions, so expertise knowledge is required. However, deep learning techniques may solve the abovementioned problem based on their excellent feature learning abilities but until now, there are only few studies on wind turbine blade icing detection based on the deep learning technology. Therefore, this paper proposes a novel blade icing detection model, named two-dimensional convolutional neural network with focal loss function (FL-2DCNN). The network takes the raw data collected by the Supervisory Control and Data Acquisition (SCADA) system as input, automatically learns the correlation between the different physical parameters in the dataset, and captures the abnormal information, in order to accurately output the detection results. However, the amount of normal data collected by SCADA systems is usually much larger than the one of blade icing fault data, leading to a serious data imbalance problem. This problem makes it difficult for the network to obtain enough features related to the blade icing fault. Therefore the focal loss function is introduced to the FL-2DCNN to solve the aforementioned data imbalanced problem. The focal loss function can effectively balance the importance of normal samples and icing fault samples, so that the network can obtain more icing-related feature information from the icing fault samples, and thus the detection ability of the network can be improved. The experimental results of the proposed FL-2DCNN based on real SCADA data of wind turbines show that the proposed FL-2DCNN can effectively solve the sample imbalance problem and has significant potential in the blade icing detection task compared with other deep learning methods.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4246 ◽  
Author(s):  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni ◽  
Robert Adam Sobolewski

Because of the stochastic nature of wind turbines, the output power management of wind power generation (WPG) is a fundamental challenge for the integration of wind energy systems into either power systems or microgrids (i.e., isolated systems consisting of local wind energy systems only) in operation and planning studies. In general, a wind energy system can refer to both one wind farm consisting of a number of wind turbines and a given number of wind farms sited at the area in question. In power systems (microgrid) planning, a WPG should be quantified for the determination of the expected power flows and the analysis of the adequacy of power generation. Concerning this operation, the WPG should be incorporated into an optimal operation decision process, as well as unit commitment and economic dispatch studies. In both cases, the probabilistic investigation of WPG leads to a multivariate uncertainty analysis problem involving correlated random variables (the output power of either wind turbines that constitute wind farm or wind farms sited at the area in question) that follow different distributions. This paper advances a multivariate model of WPG for a wind farm that relies on indexed semi-Markov chains (ISMC) to represent the output power of each wind energy system in question and a copula function to reproduce the spatial dependencies of the energy systems’ output power. The ISMC model can reproduce long-term memory effects in the temporal dependence of turbine power and thus understand, as distinct cases, the plethora of Markovian models. Using copula theory, we incorporate non-linear spatial dependencies into the model that go beyond linear correlations. Some copula functions that are frequently used in applications are taken into consideration in the paper; i.e., Gumbel copula, Gaussian copula, and the t-Student copula with different degrees of freedom. As a case study, we analyze a real dataset of the output powers of six wind turbines that constitute a wind farm situated in Poland. This dataset is compared with the synthetic data generated by the model thorough the calculation of three adequacy indices commonly used at the first hierarchical level of power system reliability studies; i.e., loss of load probability (LOLP), loss of load hours (LOLH) and loss of load expectation (LOLE). The results will be compared with those obtained using other models that are well known in the econometric field; i.e., vector autoregressive models (VAR).


2018 ◽  
Vol 49 ◽  
pp. 00023 ◽  
Author(s):  
Mariusz Filipowicz ◽  
Maciej Żołądek ◽  
Wojciech Goryl ◽  
Krzysztof Sornek

Nowadays, the worldwide growing demand for energy from renewable sources is observed. This fact is related to a number of factors, especially environmental ones. In the renewable energy sector, the most dynamic development which can be seen is wind energy. This is due to the construction of huge wind turbines, whose power exceeds even a few megawatts. The main problem that should be solved is finding a proper location for such turbines. Generally, wind turbines are located off-shore and on-shore. The most favourable are off-shore due to better wind condition, which relates to power generation. Notwithstanding, it is possible to install smaller turbines in urban areas: so-called wind turbines in built-up areas or integrate wind turbines with buildings (BIWT). This creates an opportunity to develop an integrated system of small energy sources located directly in cities. However, it is necessary to be aware of the many problems connected with the above mentioned installations. The article presents an overview and data related to operation of wind turbines integrated with the Center of Energy AGH building.


Sign in / Sign up

Export Citation Format

Share Document