scholarly journals Pairs emission in a uniform background field: an algebraic approach

2011 ◽  
Vol 44 (30) ◽  
pp. 305401 ◽  
Author(s):  
Roberto Soldati
2020 ◽  
Vol 498 (4) ◽  
pp. 5517-5523
Author(s):  
P Rashed-Mohassel ◽  
M Ghorbanalilu

ABSTRACT Particle acceleration by plasma shock waves is investigated for a magnetized plasma cloud propagating in a non-uniform background magnetic field by means of analytical and numerical calculations. The mechanism studied here is mainly, magnetic trapping acceleration (MTA) which is previously investigated for a cloud moving through the uniform interstellar magnetic field (IMF). In this work, the acceleration is studied for a cloud moving in an antiparallel background field with spatial variations along the direction of motion. For negative variation, the cloud moves towards an antiparallel magnetic field with an increasing intensity, the trapped particle moves to locations with higher convective electric field and therefore gains more energy over time. For positive variation, the background field decreases to zero and changes into a parallel field with an increasing intensity. It is concluded that, when the background field vanishes, the MTA mechanism ceases and the particle escapes into the space. This leads to a bouncing acceleration which further increases energy of the gyrating particle. The two processes are followed by a shock drift acceleration, where due to the background magnetic field gradient, the particle drifts along the electric field and gains energy. Although for positive variation, three different mechanisms are involved, energy gain is less than in the case of a uniform background field.


Author(s):  
Gary A. Glatzmaier

This chapter focuses on magnetoconvection, which refers to thermal convection of an electrically conducting fluid within a background magnetic field maintained by some external mechanism. It first provides a brief overview of magnetohydrodynamics and the magnetohydrodynamic equations before explaining how to make a 2D model of magnetic field. In this approach, the case of a uniform vertical background field and the case of a uniform horizontal background field are both considered. The chapter then describes how one could simulate a case of a uniform background field that is tilted relative to both the vertical and horizontal axes. It also considers what can be learned about the stability and structure of magnetoconvection and the dispersion relation for magneto-gravity waves from analytical analyses without the nonlinear terms. Finally, it discusses nonlinear simulations of magnetoconvection in a box with impermeable side boundaries, along with magnetoconvection with a horizontal background field and an arbitrary background field.


2007 ◽  
Vol 73 (6) ◽  
pp. 957-966
Author(s):  
P. A. SALLAGO ◽  
A. M. PLATZECK

AbstractA conducting source moving uniformly through a magnetized plasma generates, among a variety of perturbations, Alfvén waves. An interesting characteristic of Alfvén waves is that they can build up structures in the plasma called Alfvén wings. These wings have been detected and measured in many solar system bodies, and their existence has also been theoretically proven. However, their stability remains to be studied. The aim of this paper is to analyze the stability of an Alfvén wing developed in a uniform background field, in the presence of an incompressible perturbation that has the same symmetry as the Alfvén wing, in the magnetohydrodynamic approximation. The study of the stability of a magnetohydrodynamic system is often performed by linearizing the equations and using either the normal modes method or the energy method. In spite of being applicable for many problems, both methods become algebraically complicated if the structure under analysis is a highly non-uniform one. Palumbo has developed an analytical method for the study of the stability of static structures with a symmetry in magnetized plasmas, in the presence of incompressible perturbations with the same symmetry as the structure (Palumbo 1998 Thesis, Universidad de Firenze, Italia). In the present paper we extend this method for Alfvén wings that are stationary structures, and conclude that in the presence of this kind of perturbation they are stable.


2020 ◽  
Vol 117 (17) ◽  
pp. 171102
Author(s):  
Mohammad Asif Zaman ◽  
Punnag Padhy ◽  
Yao-Te Cheng ◽  
Ludwig Galambos ◽  
Lambertus Hesselink

2018 ◽  
Vol 175 ◽  
pp. 05018 ◽  
Author(s):  
Waseem Kamleh ◽  
Ryan Bignell ◽  
Derek B. Leinweber ◽  
Matthias Burkardt

The introduction of a uniform background magnetic field breaks threedimensional spatial symmetry for a charged particle and introduces Landau mode effects. Standard quark operators are inefficient at isolating the nucleon correlation function at nontrivial field strengths. We introduce novel quark operators constructed from the twodimensional Laplacian eigenmodes that describe a charged particle on a finite lattice. These eigenmode-projected quark operators provide enhanced precision for calculating nucleon energy shifts in a magnetic field. Preliminary results are obtained for the neutron and proton magnetic polarisabilities using these methods.


2014 ◽  
Vol 89 (3) ◽  
Author(s):  
Thomas Primer ◽  
Waseem Kamleh ◽  
Derek Leinweber ◽  
Matthias Burkardt

2012 ◽  
Author(s):  
Thomas Primer ◽  
Waseem Kamleh ◽  
Derek Leinweber ◽  
Matthias Burkardt

2019 ◽  
Vol 38 (4) ◽  
pp. 817-850 ◽  
Author(s):  
Luisa D'Amore ◽  
Valeria Mele ◽  
Diego Romano ◽  
Giuliano Laccetti

Sign in / Sign up

Export Citation Format

Share Document