scholarly journals Entanglement in bipartite quantum systems: Euclidean volume ratios and detectability by Bell inequalities

Author(s):  
Alexander Sauer ◽  
Jozsef Zsolt Bernad ◽  
Hector Moreno ◽  
Gernot Alber
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Barrett ◽  
Robin Lorenz ◽  
Ognyan Oreshkov

AbstractCausal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes – provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.


2003 ◽  
Vol 3 (3) ◽  
pp. 193-202
Author(s):  
K. Chen ◽  
L.-A. Wu

Motivated by the Kronecker product approximation technique, we have developed a very simple method to assess the inseparability of bipartite quantum systems, which is based on a realigned matrix constructed from the density matrix. For any separable state, the sum of the singular values of the matrix should be less than or equal to $1$. This condition provides a very simple, computable necessary criterion for separability, and shows powerful ability to identify most bound entangled states discussed in the literature. As a byproduct of the criterion, we give an estimate for the degree of entanglement of the quantum state.


2008 ◽  
Vol 41 (41) ◽  
pp. 415301 ◽  
Author(s):  
Cosmo Lupo ◽  
Paolo Aniello ◽  
Antonello Scardicchio

2013 ◽  
Vol 27 (21) ◽  
pp. 1350151
Author(s):  
YU GUO

By establishing CHSH operators and CHSH-type inequalities, we show that any entangled pure state in infinite-dimensional systems is entangled in a 2⊗2 subspace. We find that, for infinite-dimensional systems, the corresponding properties are similar to that of the two-qubit case: (i) The CHSH-type inequalities provide a sufficient and necessary condition for separability of pure states; (ii) The CHSH operators satisfy the Cirel'son inequalities; (iii) Any state which violates one of these Bell inequalities is distillable.


Sign in / Sign up

Export Citation Format

Share Document