degree of entanglement
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 35)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 66 (12) ◽  
pp. 1027
Author(s):  
B. Alemu ◽  
Ch. Gashu ◽  
E. Mosisa ◽  
T. Abebe

In this paper, the quantum properties of the cavity light beam produced by a coherently driven nondegenerate three-level laser with an open cavity and coupled to a two-mode thermal reservoir are thoroughly analyzed. We have carried out our analysis by putting the noise operators associated with the thermal reservoir in normal order. Here we discussed more the effect of thermal light and the spontaneous emission on the dynamics of the quantum processes. It is found that the maximum degree of intracavity squeezing 43% below the vacuum-state level. Moreover, the presence of thermal light leads to decrease the degree of entanglement.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3096
Author(s):  
Hana Vargová ◽  
Jozef Strečka

The concept of negativity is adapted in order to explore the quantum and thermal entanglement of the mixed spin-(1/2,S) Heisenberg dimers in presence of an external magnetic field. The mutual interplay between the spin size S, XXZ exchange and uniaxial single-ion anisotropy is thoroughly examined with a goal to tune the degree and thermal stability of the pairwise entanglement. It turns out that the antiferromagnetic spin-(1/2,S) Heisenberg dimers exhibit higher degree of entanglement and higher threshold temperature in comparison with their ferromagnetic counterparts when assuming the same set of model parameters. The increasing spin magnitude S accompanied with an easy-plane uniaxial single-ion anisotropy can enhance not only the thermal stability but simultaneously the degree of entanglement. It is additionally shown that the further enhancement of a bipartite entanglement can be achieved in the mixed spin-(1/2,S) Heisenberg dimers, involving half-odd-integer spins S. Under this condition the thermal negativity saturates at low-enough temperatures in its maximal value regardless of the magnitude of half-odd-integer spin S. The magnetic field induces consecutive discontinuous phase transitions in the mixed spin-(1/2,S) Heisenberg dimers with S>1, which are manifested in a surprising oscillating magnetic-field dependence of the negativity observed at low enough temperature.


2021 ◽  
pp. 1-8
Author(s):  
Ebisa Mosisa Kanea ◽  

In this paper, quantum entanglement of correlated two-mode light generated by a three-level laser coupled to a two-mode squeezed vacuum reservoir is thoroughly analyzed using different inseparability criteria, using the master equation, we obtain the stochastic dierential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the photon entanglement by considering different inseparability criteria. In particular, the criteria applied are Duan-Giedke-Cirac-Zoller (DGCZ) criterion, logarithmic negativity, Hillery-Zubairy, and Cauchy-Schwartz inequality and we found that the presence of the squeezing parameter leads to an increase in the degree of entanglement. Moreover, the linear gain coecient significantly achieved the degree of entanglement for the cavity radiation


2021 ◽  
Author(s):  
Sadek Ahmed Hanoura

Abstract The dynamics of the quantum entropies of a system of two cavities coupled by an optical fiber cable, each cavity contains a two-level atom interacting with a single electromagnetic field in addition to an external classical field, is investigated. Under canonical transformations, the considered Hamiltonian is diagonalized. Effective Hamiltonians in three different limiting regimes: namely large optical fiber cable coupling bstrength, large detunig, and comparable detuning and optical fiber cable coupling strength, are derived. The ith ¯ -tom are respectively prepared in the superposition coherent and the ground states while the fields are prepared in the vacuum states. An analytical expression for the solution of the Schr¨odinger equation for each dispersive is derived. The degree of entanglement (DEM) is studied by using von Neumann atomic entropies. The influences of both the optical fiber cable coupling strength and the detuning on the evolution of the DEM ”their values are closely chosen to be compatible with the imposed restrictions for the applications of the different regimes” are analyzed. General conclusions reached are illustrated by numerical results.


2021 ◽  
Vol 66 (7) ◽  
pp. 551
Author(s):  
T. Abebe ◽  
Ch. Gashu

The quantum properties of a nondegenerate three-level cascade laser coupled to a two-mode vacuum reservoir are throughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the normal ordering. Particularly, the enhancement of squeezing and the amplification of photon entanglement of the two-mode cavity light are investigated. It is found that the two cavity modes are strongly entangled, and the degree of entanglement is directly related to the two-mode squeezing. Moreover, the squeezing and entanglement of the cavity radiation enhance with the rate of atomic injection.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 999
Author(s):  
Nicola Biagi ◽  
Saverio Francesconi ◽  
Alessandro Zavatta ◽  
Marco Bellini

We present a concise review of recent experimental results concerning the conditional implementation of coherent superpositions of single-photon additions onto distinct field modes. Such a basic operation is seen to give rise to a wealth of interesting and useful effects, from the generation of a tunable degree of entanglement to the birth of peculiar correlations in the photon numbers and the quadratures of multimode, multiphoton, states of light. The experimental investigation of these properties will have an impact both on fundamental studies concerning, for example, the quantumness and entanglement of macroscopic states, and for possible applications in the realm of quantum-enhanced technologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Mario Isas ◽  
Nitin K. Pandey ◽  
Hui Xu ◽  
Kazuki Teranishi ◽  
Alan K. Okada ◽  
...  

AbstractThe first exon of the huntingtin protein (HTTex1) important in Huntington’s disease (HD) can form cross-β fibrils of varying toxicity. We find that the difference between these fibrils is the degree of entanglement and dynamics of the C-terminal proline-rich domain (PRD) in a mechanism analogous to polyproline film formation. In contrast to fibril strains found for other cross-β fibrils, these HTTex1 fibril types can be interconverted. This is because the structure of their polyQ fibril core remains unchanged. Further, we find that more toxic fibrils of low entanglement have higher affinities for protein interactors and are more effective seeds for recombinant HTTex1 and HTTex1 in cells. Together these data show how the structure of a framing sequence at the surface of a fibril can modulate seeding, protein-protein interactions, and thereby toxicity in neurodegenerative disease.


2021 ◽  
Vol 4 (1) ◽  
pp. 48-52
Author(s):  
Mohammed Zidan ◽  
◽  
Mahmoud Abdel-Aty ◽  

The algorithm that solves a generalized form of the Deutsch- Jozsa problem was proposed. This algorithm uses the degree of entanglement computing model to classify an arbitrary Oracle Uf to one of the 2n classes. In this paper, we will analyze this algorithm based on the degree of entanglement.


2021 ◽  
Author(s):  
Minh Duc Truong ◽  
Chuong Sy Ho ◽  
Dat Quang Tran

Abstract We introduce a new state called photon-added-and-subtracted two modes pair coherent state (PAASTMPCS) by simultaneously adding and subtracting photons to the different modes of a pair coherent state. Its nonclassical and non-Gaussian properties are strengthened via the negative values of its Wigner function as the numbers of adding and subtracting photons are increased. It indicates that the PAASTMPCS is an entangled state. When increasing the numbers of photon-added and photon-subtracted to a pair coherent state, the degree of entanglement in the PAASTMPCS is enhanced compared with the original pair coherent state. By using a PAASTMPCS as a non-Gaussian entangled resource, the quantum teleportation processes are studied in detail. It is shown that the number sum and phase difference measurements protocol is more appropriate than the orthogonal quadrature components measurements protocol in the quantum teleportation process of a coherent state.


Sign in / Sign up

Export Citation Format

Share Document