Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: a pilot study

2015 ◽  
Vol 9 (3) ◽  
pp. 031001 ◽  
Author(s):  
Pablo Martinez-Lozano Sinues ◽  
Elena Landoni ◽  
Rosalba Miceli ◽  
Vincenza F Dibari ◽  
Matteo Dugo ◽  
...  
Author(s):  
Beate Beer ◽  
Sabine Plattner ◽  
Michael Hubalek ◽  
Anne Oberguggenberger ◽  
Monika Sztankay ◽  
...  

AbstractThe application of cytochrome P450 2D6 (CYP2D6) genotyping to allow a personalized treatment approach for breast cancer patients undergoing endocrine therapy has been repeatedly discussed. However, the actual clinical relevance of the CYP2D6 genotype in the endocrine treatment of breast cancer still remains to be elucidated. A major prerequisite for the successful and valid evaluation of the CYP2D6 genotype with regard to its pharmacokinetic and clinical relevance is the availability of a comprehensive, accurate and cost-effective CYP2D6 genotyping strategy. Herein we present a CYP2D6 genotyping assay employing polymerase chain reaction (PCR)-ion pair reversed-phase high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (ICEMS). The genotyping strategy involves the simultaneous amplification of nine variable regions within the CYP2D6 gene by a two-step PCR protocol and the direct analysis of the generated PCR amplicons by ICEMS. The nucleotide composition profiles generated by ICEMS enable the differentiation of 37 of the 80 reported CYP2D6 alleles. The assay was applied to type the CYP2D6 gene in 199 Austrian individuals including 106 breast cancer patients undergoing tamoxifen treatment. The developed method turned out to be a highly applicable, robust and cost-effective approach, enabling an economical CYP2D6 testing for large patient cohorts.


2016 ◽  
Vol 62 (9) ◽  
pp. 1230-1237 ◽  
Author(s):  
Diego García-Gómez ◽  
Thomas Gaisl ◽  
Lukas Bregy ◽  
Alessio Cremonesi ◽  
Pablo Martinez-Lozano Sinues ◽  
...  

Abstract BACKGROUND Amino acids are frequently determined in clinical chemistry. However, current analysis methods are time-consuming, invasive, and suffer from artifacts during sampling, sample handling, and sample preparation. We hypothesized in this proof-of-principle study that plasma concentrations of amino acids can be estimated by measuring their concentrations in exhaled breath. A novel breath analysis technique described here allows such measurements to be carried out in real-time and noninvasively, which should facilitate efficient diagnostics and give insights into human physiology. METHODS The amino acid profiles in 37 individuals were determined by ion-exchange HPLC in blood plasma and simultaneously in breath by secondary electrospray ionization coupled to high-resolution mass spectrometry. Participants were split into training and test sets to validate the analytical accuracy. Longitudinal profiles in 3 individuals were additionally obtained over a 12-h period. RESULTS Concentrations of 8 slightly volatile amino acids (A, V, I, G, P, K, F, Orn) could be determined in exhaled breath with a CV of <10%. Exhalome validation studies yielded high accuracies for each of these amino acids, on average only 3% less compared to plasma concentrations (95% CI ±13%). Higher variations were found only for amino acids with a low plasma concentration. CONCLUSIONS This study demonstrates for the first time that amino acids can be quantified in the human breath and that their concentrations correlate with plasma concentrations. Although this noninvasive technique needs further investigation, exhalome analysis may provide significant benefits over traditional, offline analytical methods.


Author(s):  
Lyudmila V. Bel’skaya ◽  
Elena A. Sarf ◽  
Sergey P. Shalygin ◽  
Tatyana V. Postnova ◽  
Victor K. Kosenok

Sign in / Sign up

Export Citation Format

Share Document