Doppler lidar measurements of winds and turbulence in the boundary layer

Author(s):  
R Frehlich
2009 ◽  
Vol 26 (4) ◽  
pp. 673-688 ◽  
Author(s):  
Sara C. Tucker ◽  
Christoph J. Senff ◽  
Ann M. Weickmann ◽  
W. Alan Brewer ◽  
Robert M. Banta ◽  
...  

Abstract The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar measurements are presented. Velocity variance profiles derived from Doppler lidar data demonstrate direct application to mixing height estimation, while other types of lidar profiles demonstrate relationships to the variance profiles and thus may also be used in the mixing height estimate. The algorithms are applied to ship-based, high-resolution Doppler lidar (HRDL) velocity and backscattered-signal measurements acquired on the R/V Ronald H. Brown during Texas Air Quality Study (TexAQS) 2006 to demonstrate the method and to produce mixing height estimates for that experiment. These combinations of Doppler lidar–derived velocity measurements have not previously been applied to analysis of boundary layer mixing height—over the water or elsewhere. A comparison of the results to those derived from ship-launched, balloon-radiosonde potential temperature and relative humidity profiles is presented.


2015 ◽  
Vol 28 (2) ◽  
pp. 185-191 ◽  
Author(s):  
V. A. Banakh ◽  
I. N. Smalikho ◽  
A. V. Falits ◽  
B. D. Belan ◽  
M. Yu. Arshinov ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 06015 ◽  
Author(s):  
Márcia T. A. Marques ◽  
Gregori de A. Moreira ◽  
Maciel Pinero ◽  
Amauri P. Oliveira ◽  
Eduardo Landulfo

This study aims to compare the planetary boundary layer height (PBLH) values estimated by radiosonde data through the bulk Richardson number (BRN) method and by Doppler lidar measurements through the Carrier to Noise Ratio (CNR) method, which corresponds to the maximum of the variance of CNR profile. The measurement campaign was carried during the summer of 2015/2016 in the city of São Paulo. Despite the conceptual difference between these methods, the results show great agreement between them.


2004 ◽  
Vol 21 (12) ◽  
pp. 1809-1824 ◽  
Author(s):  
Rob K. Newsom ◽  
Robert M. Banta

Abstract A series of trials are performed to evaluate the sensitivity of a 4DVAR algorithm for retrieval of microscale wind and temperature fields from single-Doppler lidar data. These trials use actual Doppler lidar measurements to examine the sensitivity of the retrievals to changes in 1) the prescribed eddy diffusivity profile, 2) the first-guess or base-state virtual potential temperature profile, 3) the phase and duration of the assimilation period, and 4) the grid resolution. The retrieved fields are well correlated among trials over a reasonable range of variation in the eddy diffusivity coefficients. However, the retrievals are quite sensitive to changes in the gradients of the first-guess or base-state virtual potential temperature profile, and to changes in the phase (start time) and duration of the assimilation period. Retrievals using different grid resolutions exhibit similar larger-scale structure, but differ considerably in the smaller scales. Increasing the grid resolution significantly improved the fit to the radial velocity measurements, improved the convergence rate, and produced variances and fluxes that were in better agreement with tower-based sonic anemometers. Horizontally averaged variance and heat flux profiles derived from the final time steps of all the retrievals are similar to typical large-eddy-simulation (LES) results for the convective boundary layer. However, all retrieved statistics show significant nonstationarity because fluctuations in the initial state tend to be confined within the boundaries of the scan.


Sign in / Sign up

Export Citation Format

Share Document