scholarly journals Calculating the snow thermal diffusivity coefficient using snow temperature measurements

Author(s):  
E A Makeev ◽  
E A Dyukarev ◽  
S A Kurakov
2017 ◽  
Vol 833 ◽  
pp. 677-686 ◽  
Author(s):  
Krzysztof A. Mizerski

The point of this short paper is to provide a useful set of equations governing stratified convection, expressed solely in terms of two thermodynamic variables, i.e. the pressure and the entropy, and the velocity field of the flow, free from any additional assumptions about the properties of turbulence. The pressure fluctuation is entirely eliminated from the energy equation and it appears only in the momentum balance, easily removable by taking its curl. This goal is achieved through the well-known anelastic approximation and an assumption of constant thermal diffusivity coefficient. The rigorously derived system of anelastic liquid equations constitutes a useful tool for modelling the dynamics of stellar interiors.


2011 ◽  
Vol 424 (1) ◽  
pp. 28-35 ◽  
Author(s):  
O. V. Malyshkina ◽  
A. A. Movchikova ◽  
O. N. Kalugina ◽  
A. V. Daineko

2020 ◽  
Vol 10 (2) ◽  
pp. 68-85
Author(s):  
M. V. Glagolev ◽  
A. F. Sabrekov

Two problems in the theory of soil thermal conductivity are considered. First, the concept of the thermal diffusivity coefficient is discussed. It was shown that this coefficient can be used for model predictions only in a certain special cases. In the general case (when the soil thermal capacity and thermal conductivity vary in space and/or in time), the thermal diffusivity does not naturally appear. It could be artificially introduced into the heat equation but, in any case, to solve this equation (i.e., to calculate the dynamics of the soil temperature), this one parameter is not sufficient. It is necessary to set both the heat capacity and thermal conductivity as a functions of spatial and temporal coordinates or as a functions of environmental factors (e.g. soil moisture) depending on these coordinates. In this regard, the widespread misconception of the supposed sufficiency of one parameter (soil thermal diffusivity as a ratio of soil thermal conductivity to thermal capacity) for solving the heat equation using numerical methods is discussed. The examples of the common difference schemes used in computational practice show that this is not the case. Secondly, the condition number for the problem of parameters identification for the dependence of the soil thermal diffusivity coefficient on humidity for one well-known equation is considered. It is shown on real examples, that this problem is often ill-conditioned when solved by the least-squares method. However, sometimes its stability can be significantly improved if simple constraints are set for certain parameters (least-squares method with constraints). В работе рассматриваются две проблемы, возникающие в теории теплопроводности почв. Во-первых, обсуждается понятие коэффициента температуропроводности в свете того, что оно появляется только в отдельных весьма частных случаях, а в общем случае (когда теплоемкость и теплопроводность изменяются по пространству и/или с течением времени) коэффициент температуропроводности естественным образом вообще не возникает. Для такой среды с переменными (по пространству и во времени) свойствами он может быть искусственно введен в уравнение динамики температурного поля, но, в любом случае, для решения этого уравнения (т.е. для расчета динамики температурного поля) недостаточно одного параметра необходимо задать и теплоемкость, и теплопроводность как функции пространственной и временной координат или как функции факторов среды (например, влажности), зависящих от этих координат. В связи с этим обсуждается и распространенное заблуждение о якобы достаточности одного параметра (коэффициента температуропроводности как отношения теплопроводности к теплоемкости) при решении вышеуказанного уравнения численными методами. На примерах основных разностных схем, применяемых в вычислительной практике, показано, что это не так. Во-вторых, рассматривается число обусловленности задачи идентификации параметров одного изветного уравнения зависимости коэффициента температуропроводности от влажности. На конкретных примерах показано, что данная задача при ее решении обычным методом наименьших квадратов часто является плохо обусловленной. Однако иногда ее обусловленность удается существенно улучшить при наложении простейших ограничений на искомые параметры (метод наименьших квадратов с ограничениями). Текст статьи на русском языке см. на вкладке Дополнительные файлы


Sign in / Sign up

Export Citation Format

Share Document