diffusivity coefficient
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 60)

H-INDEX

13
(FIVE YEARS 2)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 368
Author(s):  
Karol Sztekler ◽  
Agata Mlonka-Mędrala ◽  
Nezar H. Khdary ◽  
Wojciech Kalawa ◽  
Wojciech Nowak ◽  
...  

Due to a high risk of power outages, a heat-driven adsorption chillers are gaining the attention. To increase the efficiency of the chiller, new adsorbents must be produced and examined. In this study, four newly developed silica–based porous materials were tested and compared with silica gel, an adsorber commonly paired with water. Extended sorption tests using mercury intrusion porosimetry, gas adsorption, and dynamic vapor sorption were performed. The morphology of the samples was determined using a scanning electron microscope. The thermal properties were defined using simultaneous thermal analysis and a laser flash method. Metal organic silica (MOS) nanocomposites analysed in this study had thermal properties similar to those of commonly used silica gel. MOS samples have a thermal diffusivity coefficient in the range of 0.17–0.25 mm2/s, whereas silica gel of about 0.2 mm2/s. The highest water adsorption capacity was measured for AFSMo-Cu and equal to 33–35%. For narrow porous silica gel mass uptake was equal about 25%. In the case of water adsorption, it was observed that the pore size of the sorbent is essential, and adsorbents with pore sizes higher than 5 nm, are most recommended in working pairs with water.


MAUSAM ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 181-186
Author(s):  
B. PADMANABHAMURTY ◽  
INDU JAIN

Temperature, wind, and humidity data at 6 levels over meteorological towers at Kharagpur and Jodhpur and fast data at Jodhpur (Sonic anemometer at 4m and Gill anemometer  15 m) and Kharagpur (Sonic anemometer at 8m and Gill anemometer at 15m) were analysed. Diurnal variation of boundary layer heights and eddy diffusivity coefficient of moment, heat and moisture at dry convective region Jodhpur (26° N, 73°E) and moist convective region Kharagpur (22.3°N, 87.2°E) of monsoon trough during onset of monsoon, mid-monsoon and end-monsoon phases of the Indian southwest monsoon are studied using micro meteorological tower data. Boundary layer height is computed by eddy correlation (direct method) and profile method {indirect method). Indirect method underestimates the boundary layer height.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3844
Author(s):  
Yixun Yu ◽  
Yunfeng Pan ◽  
Ronggui Zhou ◽  
Xinbo Miao

The glass fiber reacts with the hydroxyl owing to the concrete pore solution. A thin coat of carbon fiber wraps around the internal GFRP bars to improve the durability of internal GFRP bars in harsh environments. This paper investigates the effect of a thin carbon fiber coat on the durability of the carbon–glass hybrid fiber reinforced polymer bars (HFRP bars) in water, and compares the performance of FRP bars in alkaline solution. To this end, the water absorption behavior, interlaminar shear strength of both the GFRP bars and the HFRP bars was characterized in water and alkaline solution. The results indicate that the diffusivity coefficient of the carbon fiber coat is higher than that of internal GFRP in water. Compared to the GFRP bars in water, the HFRP bars have a higher diffusivity coefficient and saturation water absorption. It caused that the interlaminar shear strength of the HFRP bars aged in water at a temperature of 60 °C for 140 days decreases more markedly than that of the GFRP bars aged under similar conditions. Finally, it was proved that the thin carbon fiber coat does not slow the deterioration of the GFRP bars in water, while the carbon fiber coat significantly improves the retention of the interlaminar shear strength of the HFRP bars in the alkaline solution owing to the prevention of internal glass fiber reactivated by alkali ions.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012022
Author(s):  
D I Ryabkin ◽  
V V Molodykh ◽  
A Yu. Gerasimenko

Abstract In this paper, we propose a method for dynamic measurement of the thermal diffusivity coefficient during laser soldering of biological tissues. The method is based on modelling the function of temperature dependence on time during cooling of biological tissue after exposure to laser radiation. The simulation is carried out by solving the heat equation for a homogeneous biological tissue and the absence of external heat sources. The desired value of the thermal diffusivity coefficient was determined by optimizing the residual functional of the temperature functions from time obtained experimentally and by solving the thermal diffusivity equation. Experiments were carried out to measure the thermal diffusivity coefficient by the proposed method for myocardial and skin tissues at maximum heating temperatures of 40, 50, 60 °C. The measured values of the thermal diffusivity coefficient for the myocardium are in the range from 2.3 to 2.7 m2/s*10-6, and for the skin from 1.5 to 1.7 m2/s*10-6.


Author(s):  
Jiwon Jung ◽  
Chanwook Park ◽  
myungshin RYU ◽  
Gunjin Yun

Abstract This paper presents a molecular structure-informed viscoelastic constitutive equation that adopts the Doi-Edward’s tube model with coarse-grained molecular dynamics (MD) simulation and primitive path analysis. Since this model contains polymer physics-related parameters directly obtained from molecular simulations, it can reflect molecular information in predictions of the viscoelastic behavior of elastomers, unlike other empirical models. The proposed incremental formulations and constitutive stiffness matrix were implemented into implicit finite element analysis (FEA) codes as a user-supplied material model and viscoelastic properties (storage, loss modulus, and tan⁡δ) were calculated from the constitutive equation. While obtaining polymer dynamics parameter of the molecular system, a relationship between self-diffusivity coefficient (D_c) and the polymerization degree of the polymer was confirmed. Furthermore, a series of parametric studies showed that increase of the primitive path length (L) and decrease of D_c have led to the strengthening of moduli and decrease of tan⁡δ peak. Moreover, under the same condition, the shift of tan⁡δ peak to low-frequency domain was observed, which implies a decline in free volume in the molecular system and an increase in the glass transition temperature.


Author(s):  
Martín Merino Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3011
Author(s):  
Martín Merino-Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) reservoir lake, where strong diurnal winds drive internal waves, boundary mixing, and hypolimnetic warming during stratification periods. We monitored VB during 21 years (2001–2021) when important water-level fluctuations occurred, affecting mixing and nutrient flux. Stability also varied as a function of water level. Hypolimnetic warming (0.009–0.028 °C day−1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (0.639–3.515 × 10−6 m3 day−1), vertical diffusivity coefficient KZ (2.5 × 10−6–13.6 × 10−6 m2 s−1), and vertical nutrient transport to the epilimnion. Nutrient flux from the metalimnion to the epilimnion ranged 0.42–5.99 mg P m−2day−1 for soluble reactive phosphorus (SRP) and 5.8–101.7 mg N m−2day−1 for dissolved inorganic nitrogen (DIN). Vertical mixing and the associated nutrient fluxes increase evidently as the water level decreases 8 m below capacity, and they can increase up to fivefold if the water level drops over 12 m. The observed changes related to water level affect nutrient recycling, ecosystemic metabolic balance, and planktonic composition of VB.


Author(s):  
Martín Merino Ibarra ◽  
Jorge A. Ramírez-Zierold ◽  
Patricia M. Valdespino-Castillo ◽  
Fermin S. Castillo-Sandoval ◽  
Andrea P. Guzmán-Arias ◽  
...  

Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.


Author(s):  
Dhiraj Shambharkar ◽  
Dharm Pal

Abstract Formic acid is the simplest yet commercially valuable organic acid. It is widely used as a stabilizer and sterile agent in food industries. Reactive extraction is highly effective and selective technique for the recovery of formic acid from dilute solutions. Kinetics study provide rate controlling step (reaction rate or diffusion) that is required to visualize the intrinsic reactive extraction mechanism. Kinetics study of formic acid (0.1–0.4 kmol/m3) extraction with tri-n-octyl amine (TOA) (0.11–0.67 kmol/m3) in n-butyl acetate (NBA) was investigated at temperature 308 ± 1 K. Kinetics study was carried out in a Lewis cell. Effect of formic acid concentration, TOA concentration, speed of stirring, and phase volume ratio were investigated to find the reaction regime. Diffusivity coefficient (DA) of formic acid in NBA was found 3.20 × 10−7 m2/s. Reaction rate constant was evaluated to be 0.616 m3/mol s. The physical mass transfer coefficient (kL) was evaluated to be 0.8278 × 10−6 × N 3.387. The reaction was independent on hydrodynamic parameters and falls under fast reaction regime. The reaction was found first order with respect to both formic acid as well as TOA, occurring in the diffusion film. The findings of the present work are helpful in the selection of commercially viable extraction system and in the design of extractors.


Sign in / Sign up

Export Citation Format

Share Document