scholarly journals Anthropogenic and biogenic volatile organic compounds and ozone formation potential in ambient air of Kuala Lumpur, Malaysia

Author(s):  
H H A Hamid ◽  
M H M Hazman ◽  
M S M Nadzir ◽  
R Uning ◽  
M T Latif ◽  
...  
2019 ◽  
Vol 19 (13) ◽  
pp. 8897-8913 ◽  
Author(s):  
Meng Li ◽  
Qiang Zhang ◽  
Bo Zheng ◽  
Dan Tong ◽  
Yu Lei ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Emmanuel Gbenga Olumayede

The relative contribution of individual volatile organic compounds (VOC) species to photochemical ozone formation depends on their atmospheric concentrations and their oxidation mechanism. In an attempt to evaluate the ozone creation potential of ambient VOCs captured in an urban settlement of Benin City, Nigeria, the VOCs concentrations data collected in field studies at nine measurement sites of different air quality in the city and a background site were analysed. Air samples were collected at human breathing height of 1.5 meters from ground level at each site. Active sampling method using the low volume sampling pump (Acuro, Drager, Lubeck, Germany) was used to drawn the air into the tube; the absorbent was Chromosorb 106. The sampling periods were between May 2010 and June 2011; the period covered both dry and wet seasons. The adsorbed gases were desorbed using solvent extraction method with carbon disulphide as solvent. The extracted solutions were analyzed with gas chromatography and mass spectrometer. The observed concentrations of individual VOCs were determined and maximum incremental reactivity (MIR) coefficient along with rate constants of VOC-OH reactions were applied to assess the ozone formation potential of individual VOC in the ambient atmosphere. Sixteen VOC species were observed at various sites with mixing height in decreasing order: toluene (5.82), mp-xylene (3.58), ethylbenzene (3.46), benzene (2.29), and n-butane (0.84). The ozone formation potential study revealed that, ranking by propyl-equivalent, the alkanes included in this study account for 58% of the total propyl-equivalent concentration. The total ozone creation potential in the atmosphere of the Benin City was calculated to be 281.1 µg/m3. A comparison of total ozone formation potential (OFP) in our study with results obtained from other cities of the world revealed that the total concentration of ozone production in our study is threefold lower than the values reported in China city of Foshan. It is suggested that the sources of this pollutant need to be monitored in the area as a way of curtailing the impact of ozone in this city.


2011 ◽  
Vol 45 (14) ◽  
pp. 2404-2412 ◽  
Author(s):  
Mazyar Zeinali ◽  
Laura L. McConnell ◽  
Cathleen J. Hapeman ◽  
Anh Nguyen ◽  
Walter F. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document