pesticide formulations
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Nusrat Iqbal ◽  
Amrish Agrawal ◽  
Md. Imteyaz Alam ◽  
Jitendra Kumar

The agricultural sector of Asian countries supports 60% of the global population, accounting one-fifth of the world’s agricultural land. Despite the gap between demand and supply of food is gradually increasing due to the damages caused by insect and other pest attacks on the limited agricultural land, the pest attack has influenced the entire agriculture sector either directly or indirectly, causing socioeconomic losses. To combat, farmers have been using conventional agrochemicals nonjudiciously that lead to adverse effects such as pesticide resistance, environmental contamination, and non-target toxicity. In this regard, new-generation agrochemical formulation techniques are advantageous over conventional pesticides and play a vital role in sustainable agriculture by fulfilling the demand of over-rising food supply to feed the increasing population. These formulations exhibit desired bio-efficacy at lower doses and have minimum possibility to leave pesticide residues in crop products and the environment. Institute of Pesticide Formulation Technology (IPFT), Gurugram, is one of the leading institutes in Asia, which is actively engaged in developing new-generation formulations to deliver safer, efficient, and environment-friendly pesticide formulations. So far, IPFT has developed 60 pesticide formulations and transferred technologies to different agrochemical industries globally. The new-generation formulations developed by IPFT mainly include microemulsion, nanoemulsion, capsulated suspension, nano-encapsulation, an emulsion in water, mixed formulations including several botanical pesticide formulations. The new advancement in pesticide delivery systems is very supportive in combating the crisis faced by the agricultural sector. In this chapter, formulation of different new-generation pesticides and their advancement are summarized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edward A. Straw ◽  
Mark J. F. Brown

AbstractPollinators, particularly wild bees, are suffering declines across the globe, and pesticides are thought to be drivers of these declines. Research into, and regulation of pesticides has focused on the active ingredients, and their impact on bee health. In contrast, the additional components in pesticide formulations have been overlooked as potential threats. By testing an acute oral dose of the fungicide product Amistar, and equivalent doses of each individual co-formulant, we were able to measure the toxicity of the formulation and identify the ingredient responsible. We found that a co-formulant, alcohol ethoxylates, caused a range of damage to bumble bee health. Exposure to alcohol ethoxylates caused 30% mortality and a range of sublethal effects. Alcohol ethoxylates treated bees consumed half as much sucrose as negative control bees over the course of the experiment and lost weight. Alcohol ethoxylates treated bees had significant melanisation of their midguts, evidence of gut damage. We suggest that this gut damage explains the reduction in appetite, weight loss and mortality, with bees dying from energy depletion. Our results demonstrate that sublethal impacts of pesticide formulations need to be considered during regulatory consideration, and that co-formulants can be more toxic than active ingredients.


Author(s):  
Ningjun Li ◽  
Changjiao Sun ◽  
Jiajun Jiang ◽  
Anqi Wang ◽  
Chong Wang ◽  
...  

Author(s):  
Lenche Velkoska-Markovska ◽  
Biljana Petanovska-Ilievska

AbstractThe quality of pesticide formulations has an impact on the crop safety, environment and human health. Therefore, the development of new analytical methods for the determination of active substances in pesticide formulations in order to control their quality, as well as, their residues in food samples in order to ensure food safety, is always welcome. A new, simple, precise and accurate normal-phase high-performance liquid chromatography (NP-HPLC) method for determination of an active ingredient malathion in the commercial emulsifiable concentrate pesticide product has been developed and validated. The analysis was carried out on a LiChrosorb CN (250 x 4 mm, 5 μm) analytical column using isocratic elution with mobile phase consisted of n-hexane and dichloromethane (80/20, v/v), flow rate of 1 mL/min, constant column temperature at 25 °C and ultraviolet diode-array detection at 220 nm. The obtained values for multiple correlation coefficients (R2 ≥ 0.9990), relative standard deviation of retention times, peak areas and heights (RSD ≤ 1.14%), recoveries ranged from 98.97 to 101.62%, revealed that the developed method has a satisfactory linearity, precision and accuracy. Also, the developed method was successfully applied for determination of malathion residues in apple juice samples, after preliminary sample preparation using solid-phase extraction. Specificity, selectivity, linearity, matrix effect, precision and accuracy were tested in order to validation of this method. The obtained results were in acceptable ranges and indicated that the developed method is suitable for routine determination of malathion in the pesticide formulation, as well as for determination of malathion residues in apple juice samples. The run time of HPLC analysis was about 6 min.


Chemosphere ◽  
2021 ◽  
pp. 131920
Author(s):  
S.M.L. Lavarías ◽  
K.D. Colpo ◽  
S.M. Landro ◽  
E.S. Ambrosio ◽  
A. Rodrigues Capítulo ◽  
...  

2021 ◽  
Vol 13 (SI) ◽  
pp. 110-123
Author(s):  
B. Asan Mohamed ◽  
P. Janaki

Pesticides have become a basic necessity for yield development. This might be credited to the quickly expanding population, which has presented weight on the food creation industry.Fourier Transform Infra-red Spectroscopy utilizes sample with less course of action, less time consuming, simple, fast, non-destructive and environmental friendly infrared-based method. It makes use of Smart iTR window and pellets use on omnic transmission window. In FTIR the peaks formed for the representative sample are from 800 cm-1 to 4000 cm-1 of wavenumbers against the % transmittance. The FTIR spectra obtained for pesticide formulations were on par with the NIST (National Institute of Standards and Technology) spectra library. Comparing the commercial-grade spectra with the Spectrabase, NIST library and Bio-rad software showed the peak ranges for different functional groups of the compound and can be examined with KnowItAll software’s ProcessItIR and AnalyseItIR. We can obtain the active principle of the peak, peak intensities. This method can be viewed as genuine choices to long and tedious chromatographic strategies as a rule suggested for quality control of commercially accessible pesticide formulations and check for adultered formulations that harm agricultural produce.  


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Sora Shin ◽  
Eun Hea Jho ◽  
Han Sol Park

AbstractThis study was set to study the effects of surfactants on crops using Triton X-100, one of widely used surfactants for various purposes including agricultural uses, as a target surfactant. The effects of Triton X-100 on the growth of wheat and lettuce were studied and the germination and shoot growth of wheat were not significantly affected by Triton X-100. With lettuce, the increasing Triton X-100 concentrations tend to negatively affect the growth, possibly due to the absorption of Triton X-100 by lettuce. The average lettuce fresh mass was reduced by 31% when Triton X-100 concentration increased from 0 to 240 mg L−1. This may mean that chemicals dissolved or mobilized by Triton X-100 can be absorbed by lettuce. The Cd mobilization was facilitated with Triton X-100, and the absorption of procymidone in soil by lettuce was greater when Triton X-100 was applied (i.e., 0.18 mg kg−1) than when water was applied (i.e., 0.15 mg kg−1), although they were statistically not different (p-value > 0.05). The average lettuce masses in the presence of residual procymidone in soil and Triton X-100 (16 g) were lower than that of the control soils (20 g), although they were statistically not different (p-value > 0.05). The results suggest that surfactants contained in pesticide formulations can potentially affect crop growth and absorption of other contaminants. Therefore, the residual surfactants and active ingredients in pesticide formulations need to be properly managed to protect the environment and to produce crops free of contaminants.


Sign in / Sign up

Export Citation Format

Share Document