scholarly journals Correction of the Artificial Influence on Dredging Volume in the Yangtze Estuary Deep-water Channel

Author(s):  
Meng Liu ◽  
Hong-wei Zhang
2021 ◽  
Author(s):  
Aofei Ji ◽  
Peng Hu ◽  
Zhiguo He ◽  
Fengfeng Gu

<p><strong>Abstract: </strong>In the Yangtze River Estuary deep-water channel regulation project, soft mattresses have been widely used to reduce bed erosion and thus improve stability of bridges/piers/levees/dikes. However, soft mattresses are also subject to failure due to the continuous and gradual scour in their edges, which have been a major risk for their stability. Here we report a preliminary numerical study on this issue. Firstly, a depth-averaged two-dimensional hydro-sediment-morphodynamic model is applied to simulate edge scour process for the submerged dike of the Jiangyanansha in the Yangtze estuary. For this purpose, physically-based sediment erosion parameterization is proposed to take account of the effect of the soft mattresses. Compared with the inner area of the soft mattress, only the edge area has stronger erodibility. Numerical comparative studies indicate that a scouring pit may develop to the vicinity of the submerged dike without the protection of the soft mattress, whereas under the protection of the soft mattress, the scouring pit can be largely controlled. Nevertheless, as the scouring process continues, the pit region and depth increase, which may finally lead to failure of the soft mattress. Finally, full 3D high-resolution simulations of the near-bed flow structure with/without edge scour are conducted using flow3D to shed light on the failure mechanisms of the soft mattresses.</p><p><strong>Keywords:</strong> submerged dikes, soft mattress, erodibility, Yangtze estuary, edge scour, flow structure</p>


2010 ◽  
Vol 33 (6) ◽  
pp. 1219-1225 ◽  
Author(s):  
Fei-Yan ZHANG ◽  
Jing-Liang TANG ◽  
Dao-Ji LI ◽  
Tao FANG ◽  
Biao WANG

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1435
Author(s):  
Peng Hu ◽  
Junyu Tao ◽  
Aofei Ji ◽  
Wei Li ◽  
Zhiguo He

In this paper, a computationally efficient shallow water model is developed for sediment transport in the Yangtze estuary by considering mixed cohesive and non-cohesive sediment transport. It is firstly shown that the model is capable of reproducing tidal-hydrodynamics in the estuarine region. Secondly, it is demonstrated that the observed temporal variation of suspended sediment concentration (SSC) for mixed cohesive and non-cohesive sediments can be well-captured by the model with calibrated parameters (i.e., critical shear stresses for erosion/deposition, erosion coefficient). Numerical comparative studies indicate that: (1) consideration of multiple sediment fraction (both cohesive and non-cohesive sediments) is important for accurate modeling of SSC in the Yangtze Estuary; (2) the critical shear stress and the erosion coefficient is shown to be site-dependent, for which intensive calibration may be required; and (3) the Deepwater Navigation Channel (DNC) project may lead to enhanced current velocity and thus reduced sediment deposition in the North Passage of the Yangtze Estuary. Finally, the implementation of the hybrid local time step/global maximum time step (LTS/GMaTS) (using LTS to update the hydro-sediment module but using GMaTS to update the morphodynamic module) can lead to a reduction of as high as 90% in the computational cost for the Yangtze Estuary. This advantage, along with its well-demonstrated quantitative accuracy, indicates that the present model should find wide applications in estuarine regions.


Sign in / Sign up

Export Citation Format

Share Document