NUMERICAL SIMULATION OF BED TOPOGRAPHY CHANGES INDUCED BY DEEP WATER NAVIGATION CHANNEL PROJECT IN THE YANGTZE ESTUARY

Author(s):  
Jingxin ZHANG ◽  
Hua LIU ◽  
Yousheng HE
2012 ◽  
Vol 1 (33) ◽  
pp. 69
Author(s):  
Zheng Bing Wang ◽  
Pingxing Ding

The channels in the Yangtze Estuary have an ordered-branching structure: The estuary is first divided by the Chongming Island into the North Branch and the South Branch. Then the South Branch is divided into the North Channel and South Channel by the Islands Changxing and Hengsha. The South Channel is again divided into the North and South Passage by the Jiuduansha Shoal. This three-level bifurcation and four-outlet configuration appears to be a natural character of the estuary, also in the past (Chen et al., 1982), although the whole system has been extending into the East China Sea in the southeast direction due to the abundant sediment supply from the Yangtze River. Recently, the natural development of the system seems to be substantially disturbed by human interferences, especially the Deep Navigation Channel Project. For the understanding of the behaviour of the bifurcating channel system in the estuary we present analysis on two aspects: (1) the equilibrium configuration of river delta distributary networks, and (2) influence of tidal flow on the morphological equilibrium of rivers. Based on the analyses we conclude that the branching channel structure of the Yangtze Estuary can be classified as tide-influenced river delta distributary networks. Its basic structure is the same as in case of river dominated delta. The empirical relations describing the basic features of the river-dominated distributary delta networks can be explained by theoretical analysis, although they are not fully satisfied by the Yangtze Estuary because of the influence of the tide. Two major influences of the tide are identified, viz. increasing the resistance to the river flow into the sea and increasing the sediment transport capacity. As consequence of these two influences the cross-sectional area of the river/estuary increases in the seawards direction and the bed slope decreases. The insights from the analyses are helpful for the understanding of the impact of the Deep Navigation Channel Project on the large scale morphological development of the estuary.


2012 ◽  
Vol 46 (4) ◽  
pp. 60-70 ◽  
Author(s):  
Zhenyi Cao ◽  
Xiao Hua Wang ◽  
Weibing Guan ◽  
Les J. Hamilton ◽  
Qi Chen ◽  
...  

AbstractA bottom quadrapod was deployed from March 29 to April 5, 2009 to measure bottom boundary layer (BBL) flows and nepheloid layer properties in the Deepwater Navigation Channel in the North Passage of Shanghai Port in the Yangtze estuary. Using a downward-looking acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter, detailed measurements of mean velocity and turbulence distribution within 1 m above the seabed were obtained. It appears that corrupted speeds measured for the deeper bins are caused by formation of the nepheloid layer at the seabed, implying that the ADCP is not a suitable instrument to measure current velocities in the bins nearest the seafloor. A statistical clustering method was used to characterize the current profiles in the BBL. The majority of current profiles within the BBL had a simple shape with current speed monotonically decreasing with depth, reflecting a logarithmic boundary layer. Phase-corrupted ADCP speeds measured for bins close to the bottom are shown to be useful as proxies to indicate the presence of primary and secondary lutoclines/nepheloid layers. A lutocline is a sediment-induced density gradient or pycnocline. The primary lutocline is closest to the bottom, and below it is the nepheloid layer, which is commonly composed of fluid mud. The proxies indicated that a nepheloid layer formed in the neap tide when the current velocity 1 m above the seabed dropped below a threshold of 0.65 m/s. The lutocline height was indicated to be about 0.2 m above the seabed. A secondary lutocline in the water column was also observed in the second half of the record, when the lowest maximum currents occurred.


Sign in / Sign up

Export Citation Format

Share Document