scholarly journals Landslide investigation using self potential method and electrical resistivity tomography (Pasanggrahan, South Sumedang, Indonesia)

Author(s):  
Budy Santoso ◽  
Mia Uswatun Hasanah ◽  
Setianto
2020 ◽  
Vol 21 (1) ◽  
pp. 33
Author(s):  
Budy Santoso ◽  
Subagio Subagio ◽  
Mia Uswatun Hasanah ◽  
Hilman Suwarga

Land movement occur because of the movement of slope-forming material such as of soil, rock or a combination of material types to a place that is lower due to the influence of gravity. The movement of slope material can be identified by the Electrical Resistivity Tomography (ERT) Method, because this method has good lateral and vertical resolution based on rock resistivity data. The trigger factors for land movement in Anjung Village, Pasanggrahan Baru, South Sumedang, among others: an increase in water content on the slopes and the slip plane. Increased water content is influenced by infiltration of rainwater as one of the triggers of land movement,  can be detected by the Self Potential method (SP), while the slip plane can be detected by the method of Electrical Resistivity Tomography (ERT). Based on the results of the ERT and SP measurements, the results are: debris flow as a landslide plane (resistivity values: 31 – 170 Ohm.m and SP values: 5 – 13 mV), water table/water saturated layer (resistivity values: 1 – 13 Ohm.m and SP values: 14 – 34 mV), and breccias (resistivity values: 400 - 900 Ohm.m and SP values: 1-3 mV).Slip plane are estimated to be at boundary between the breccia and the material on it.Keywords: Land movement, resistivity, self potential, South Sumedang


2004 ◽  
Vol 8 (1) ◽  
pp. 8-22 ◽  
Author(s):  
V. Naudet ◽  
A. Revil ◽  
E. Rizzo ◽  
J.-Y. Bottero ◽  
P. Bégassat

Abstract. Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP) and electrical resistivity tomography (ERT) have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution) and redox conditions ("electro-redox" contribution). Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85) is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91) is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume


2005 ◽  
Vol 10 (4) ◽  
pp. 381-389 ◽  
Author(s):  
P. B. Wilkinson ◽  
J. E. Chambers ◽  
P. I. Meldrum ◽  
R. D. Ogilvy ◽  
C. J. Mellor ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Meying Arsène ◽  
Bidichael Wahile Wassouo Elvis ◽  
Gouet Daniel ◽  
Ndougsa-Mbarga Théophile ◽  
Kuiate Kelian ◽  
...  

Exploration and production of groundwater, a vital and precious resource, is a challenging task in hard rock, which exhibits inherent heterogeneity. A geophysical survey was conducted in Méiganga, Mbéré department, in the Adamawa region, Cameroon. High-resolution electrical resistivity tomography (ERT) and self-potential (SP) dataset were collected in a gneissic terrain to solve the groundwater problem as people are facing acute shortage of drinking water in the study area. The analysis and interpretations based on resistivity models revealed substantial resistivity contrast between the altered gneiss that might contain water and massive gneiss and delineated five deeper groundwater prospects zones located at Yelwa, Ngoa-Ekélé, Sabongari, Ngassiri, and Gbakoungué, respectively. Nevertheless shallow groundwater zones (<13 m) are located in the northern part of the study area at high elevation while best prospect and productive groundwater zones lying between 20 and 25 m depth are at low elevation in the southern part. On the other hand, analysis of SP negative peaks along with groundwater head and groundwater vector maps revealed areas of recharge and discharge across the study area. The discharge areas serve as groundwater collection center and are good groundwater potential zones. In addition these maps revealed that groundwater flow pattern shows inward flow from the flanks to center and south central parts of the study area.


Sign in / Sign up

Export Citation Format

Share Document