scholarly journals Near-surface S-wave Estimation base on Inversion of Rayleigh Wave Dispersion Curve Using Genetic Algorithm

Author(s):  
Al Rubaiyn ◽  
Awali Priyono ◽  
Tedi Yudistira
2021 ◽  
Vol 26 (2) ◽  
pp. 99-110
Author(s):  
Xin Wang ◽  
Hongyan Shen ◽  
Xinxin Li ◽  
Qin Li ◽  
Daoyuan Wang

Rayleigh wave dispersion curve inversion is a non-linear iterative optimization process with multi-parameter and multi-extrema. It is difficult to carry out inversion and reconstruction of stratigraphic parameters quickly and accurately with a single linear or non-linear inversion for the data processing of Rayleigh waves with complex seismic geological conditions. We proposed a new method that combines artificial bee colony algorithm (ABC) and damped least squares algorithm (DLS) to invert Rayleigh wave dispersion curve. First, food sources are initialized in a large scale of the model based on the prior geological information. Then, after three kinds of bee operators (employed bees, onlooker bees and scout bees) transform each other and perform search optimization with several iterations, the targets are converged near the optimal solution to obtain an initial S-wave velocity model. Finally, the final S-wave velocity model is obtained by local optimization of DLS inversion with fast convergence and strong stability. The correctness of the method has been verified by one high-velocity interlayer model, and it was further applied to a real Rayleigh wave dataset. The results show that our method not only absorbs the advantages of ABC global search optimization and strong adaptability, but also makes full use of the advantages of DLS inversion, such as high accuracy and fast convergence speed. The inversion strategy can effectively suppress the inversion falling into local extrema, get rid of the dependence on an initial model, enhance the inversion stability, further improve the convergence speed and inversion accuracy, while has good anti-noise ability.


2013 ◽  
Vol 353-356 ◽  
pp. 1196-1202 ◽  
Author(s):  
Jian Qi Lu ◽  
Shan You Li ◽  
Wei Li

Surface wave dispersion imaging approach is crucial for multi-channel analysis of surface wave (MASW). Because the resolution of inversed S-wave velocity and thickness of a layer are directly subjected to the resolution of imaged dispersion curve. The τ-p transform approach is an efficient and commonly used approach for Rayleigh wave dispersion curve imaging. However, the conventional τ-p transform approach was severely affected by waves amplitude. So, the energy peaks of f-v spectrum were mainly gathered in a narrow frequency range. In order to remedy this shortage, an improved τ-p transform approach was proposed by this paper. Comparison has been made between phase shift and improved τ-p transform approaches using both synthetic and in situ tested data. Result shows that the dispersion image transformed from proposed approach is superior to that either from conventionally τ-p transform or from phase shift approaches.


2015 ◽  
Vol 771 ◽  
pp. 179-182 ◽  
Author(s):  
Yekti Widyaningrum ◽  
Sungkono ◽  
Alwi Husein ◽  
Bagus Jaya Santosa ◽  
Ayi S. Bahri

Rayleigh wave dispersion is intensively used to determine near surface of shear wave velocity (Vs). The method has been known as non-invasive techniques which is costly effective and efficient to characterize subsurface. Acquisition of the Rayleigh wave can be approached in two ways, i.e. passive and active. Passive seismic is accurate to estimate dispersion curve in low frequency, although it is not accurate for high frequency. While active seismic is vice versa of passive seismic. The high frequency of Rayleigh wave dispersion reflects to near surface and vice versa. Therefore, we used the combination of both passive and active seismic method to overcome the limitations of each method. The Vs which is resulted by inversion of the combining data gives accurate model if compared to log and standard penetration test (N-SPT) data. Further, the approach has been used to characterize LUSI (Lumpur Sidoarjo) embankments. The result shows that embankment material (0-12 m) has higher Vs than that lower embankment material.


Sign in / Sign up

Export Citation Format

Share Document