scholarly journals Effects of operating pressure, lateral length and irrigation period on the fuel consumption of a centrifugal pump in a pressurized drip irrigation system

Author(s):  
D O Onwuegbunam ◽  
G Z Nayan ◽  
T M A Olayanju ◽  
N E Onwuegbunam
2014 ◽  
Vol 9 (30) ◽  
pp. 2298-2305 ◽  
Author(s):  
Evans ASENSO ◽  
Jiuhao LI ◽  
Hai-Bo CHEN ◽  
Emmanuel OFORI ◽  
Fuseini ISSAKA ◽  
...  

2021 ◽  
Vol 904 (1) ◽  
pp. 012013
Author(s):  
B A AL-Dulaimi ◽  
Sh M AL-Mehmdy

Abstract A field experiment was conducted in Jazeerah Al-Ramadi/Al-Hamidiyah research station (latitude33^o 27^’ 〖 11.9 〗 ^(՚՚)N, longitude 43^o 23^’ ^(՚՚) E (duration 2020. This study was conducted to investigate the effect of pipe types and emitters discharge on performance criteria of surface drip irrigation system. Therefore, a two factorial experiment was set as randomized complete block design with three replications. The first factor included the type of pipes and emitters, namely Turbo, GR and T-Tape. While the second factor involved the emitters discharge which consist of two levels i.e., 4 (D4) and 8 (D8) L.h-1. The irrigation system was initially evaluated in the field before planting by testing three operating pressures (50, 100 and 150 Kpa) to determine the actual discharge of the emitters closed to their design discharge (4 and 8 L.h-1) for each emitter to calculate the manufacturing coefficient of variation (CV), distribution uniformity and the discharge variation ratio at each operating pressure. Results showed that the best discharge (Closed to design discharge of 4 L.h-1) was obtained at the 50 Kpa operating pressure which gave 3.99,3.90 and 3.81 L.h-1 when using the T-Tape pipe and GR and Turbo emitter compare when the discharge of 8L.h-1 has been used which gave 7.96, 7.84 and 7.59 L.h-1 when the former pipe and emitters were used. The best coefficient of variation was observed when the T-Tape pipe and GR and Turbo emitter were used with discharge of 4 L.h-1 up to 0.1300, 0.2200 and 0.2600 compare to 0.1300, 0.2700 and 0.3500 when the same former pipe and emitters were used with discharge of 8L. h-1. Similarly, the best distribution uniformity was obtained when the T-Tape pipe and GR and Turbo emitter has been used with discharge of 4 L.h-1 which gave 94.68, 91.74 and 90%. Likewise, the most acceptable variety discharge ratio was observed when the same prior pipe and emitters were used with discharge of 4 L.h-1 by giving 7.23, 11.90 and 12.19 %.


2018 ◽  
Vol 18 (1) ◽  
pp. 33
Author(s):  
Muhamad Idrus ◽  
Andre Velthuzend ◽  
Didik Kuswadi ◽  
Suprapto Suprapto ◽  
I Gde Darmaputra

This research was conducted in PT Nusantara Tropical Farm ( PT NTF) at Jepara, Margosakti, Labuhan Ratu, East Lampung District.  The plants which were cultivated in PT NTF such as Cavendish banana, pineapple, crystal guava, and naga fruit. The irrigation being used to irrigated cavendish banana is drip irrigation method with Aries emitter type. Watering method of drip irrigation system that used for Cavendish banana is cross watering and block watering methods. The goals of this research were to determine the performance of drip irrigation line for Cavendish banana by using both kinds of watering method.  The performance indicator of irrigation system included the conveyance efficiency, the uniformity coefficient, the length time irrigation, and the amount of fuel consumption for diesel machine of a pump. The result of this research showed that the value of the conveyance efficiency of drip irrigation with cross watering method was 90,2% and 80,0% for block watering method. The uniformity coefficient on cross watering method was 87,55% and 97,10% for block watering method.  The amount of fuel consumption for 10,46 ha area with cross watering method was 29,49 l  and 40,52 l  for 10,2 ha area with block watering method.


2017 ◽  
Vol 9 (4) ◽  
pp. 2261-2263
Author(s):  
Mairaj Hussain ◽  
Sudhiranjan Prasad Gupta

Drip irrigation technology will undoubtedly plays an important role in the future of the agriculture. A field experiment was conducted to evaluate the performance of drip system with five operating pressure viz. I1 (0.4 kg/ cm2), I2 (0.6 kg/cm2), I3 (0.8 kg/cm2), I4 (1.0 kg/cm2), I5 (1.2 kg/cm2). It was observed that the average discharge of drippers was 1.08 lph, 1.24 lph, 1.50 lph, 1.62 lph and 1.74 lph and emission uniformity was 80.55%, 84.89%, 86.30%, 88.88% and 90.80 in each treatment respectively and coefficient of variation was observed 0.12, 0.13, 0.12, 0.11, and 0.09. Flow component was found 0.450 and the value of k was 0.572 while R2 was observed 0.986.Based on the result it can be concluded that the operation of drip irrigation system at 1.2 kg/cm2 pressure head, gives the maximum efficiency in respect of discharge, emission uniformity and coefficient of variation.


Author(s):  
Parth J. Kapupara ◽  
Hina M. Bhatu ◽  
Jay Gohel

Background: Drip irrigation system is one of the best water application methods that have been used in the world among the other irrigation methods because of its upright and high uniformity and high-water use efficiency. Hydraulic performance evaluation is widely accepted for the evaluation of overall uniformity of a drip irrigation system. Methods: In an experimental study carried out at School of Engineering, RK University, Rajkot; hydraulic performance evaluation parameters viz., Pressure discharge relationship, Christiansen’s uniformity coefficient (CU), manufacturing coefficient of variation (CVm) and emission uniformity (EU) of non-pressure compensating emitters were calculated for 2 lph inline and 2 lph, 4 lph, 8 lph online emitter at various operating pressure of 0.8, 0.9, 1.0, 1.1 and 1.2 kg/cm2 as per American Society of Agricultural and Biological Engineers (ASAE) standards. Result: The study concluded that rated discharge of the emitter can be obtained at the operating pressure of 1.0 kg/cm2. Pressure discharge relationship revealed that discharge of the emitter upsurges as pressure rises. CU and EU were more than 95% for all the cases and they were maximum at 1.0 kg/cm2. CVm was less than 0.0200 for all the cases and it was minimum at 1.0 kg/cm2. Study concludes that all the parameter viz., CU, EU and CVm were excellent and very good categories for all emitters as per American Society of Agricultural and Biological Engineers (ASAE) standards.


Author(s):  
Eddy Herman Sharu

Irrigation is the most important component in ensuring that crops can produce optimal yields. The use of drip irrigation can help farmers in providing water to crops in the amount required by the crop. Drip irrigation usually uses an uncompensated dripper and also a pressure compensated dripper. The use of an uncompensated dripper requires precise pressure to ensure a uniform flow for each dripper while the use of a pressure compensated dripper will also provide a uniform flow when operating pressure was used within the range specified by the dripper manufacturer. The purpose of this study is to evaluate the hydraulic performance of the drip irrigation system using low pressure compared to the minimum pressure recommended by dripper manufacturers. The pressure operation recommended by the manufacturer is 1.5-4 bars. This study uses pressures as low as 1 bar (low pressure), 2 bars, and 2.5 bars (recommended by manufacture) to operate this irrigation system. The volumetric approach was used to calculate each emitter's flow rate. Coefficient uniformity (CU), emission uniformity (EU), coefficient of variation (CV), and emitter flow variation (EFV) were the hydraulic parameters evaluated. The results show that CU, CV, and EU are in excellent classification, and the value for CU and the EU is more than 95 percent efficiency. The CV value is below 0.03 which is a very good classification. Meanwhile, emitter flow variation is 10% when operating at 2.5 bars and 2.0 bars and is considered the desirable classification. On the other hand, the emitter flow variation was reported at 6% for the 1 bar operating pressure and the classification was also recorded in the desirable classification. The results conclude that the use of low operating pressure compared to the minimum operating pressure proposed by the manufacturer can also operate in excellent condition according to the hydraulic parameters evaluated.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2295
Author(s):  
Eddy Herman Sharu ◽  
Mohd Shahrizal Ab Razak

This study was conducted at Laman Sayur, Malaysia Agro Exposition Park Serdang (MAEPS), to investigate the hydraulic performance of a small-scale drip irrigation system. The modelling was carried out using EPANET software to understand how the drip irrigation system is operated. Model results show that the errors are small, i.e., 2.2% and 3.0% for pressures, and 1.7% for discharge in lateral pipe 1 and lateral pipe 2. The root mean square error (RMSE) and the mean bias error (MBE) for discharge were recorded at 0.04 L/h and 0.03 L/h for lateral pipe 1 and 0.04 L/h and 0.02 L/h for lateral pipe 2. RMSE and MBE for pressure were recorded at 0.61 m and 0.68 m for lateral pipe 1, and 0.79 m and 0.68 m for lateral pipe 2, respectively. These results show that the model yields good performance. For hydraulic performance, the field measurement was conducted with four operating pressures: P1 (15.3), P2 (20.4), P3 (25.5), and P4 (28.6) meters. The hydraulic parameters evaluated were the coefficient of uniformity (CU), the emission uniformity (EU), the coefficient of variation (CV), and the emitter flow variation (EFV). The operating pressure during the measurement is constant according to the specified pressure. The results show that CU, CV, and EU are in the excellent classification, and values of CU and EU have more than 95% efficiency. The value for CV is below 0.03, which is excellent. The EFV is 10% when operating at 25.5 m and 15.3 m and is considered desirable. On the other hand, for the 28.6 m and 15.3 m operating pressures, the EFV parameters were recorded at 13.6% and 10.29%, respectively, and are classified acceptable. This study concluded that the operating pressures, P2 (20.4 m) and P3 (25.5 m), were performed under excellent classification for all hydraulic parameters evaluated. Based on the outputs from the model, it is inferred that the existing drip irrigation system at Laman Sayur MAEPS is operated in an over-powered state. With the current pump power consumption, the irrigation system could be operated at a minimum of four times the capacity of the existing irrigation system. To reduce the power consumption, it is suggested that the system is operated at a lower pumping power. This would minimize the operating costs especially for the development of a new drip irrigation system that has the same capacity as the drip irrigation system that is currently being operated at Laman Sayur, MAEPS Serdang.


Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


Sign in / Sign up

Export Citation Format

Share Document